Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 5, pp 1285–1303 | Cite as

Separability and Entanglement in the Hilbert Space Reference Frames Related Through the Generic Unitary Transform for Four Level System

  • V. I. Man’ko
  • L. A. Markovich
Article
  • 43 Downloads

Abstract

Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.

Keywords

Qudit state Entanglement Peres-Horodecki criterion Unitary transform 

Notes

Acknowledgements

Markovich L.A. was partly supported by the Russian Foundation for Basic Research, grant 16-08-01285 A)

References

  1. 1.
    Bennett, C.H.: Phys. Today 48(10), 24 (1995)CrossRefGoogle Scholar
  2. 2.
    DiVincenzo, D.P.: Science 270, 255 (1995)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Einstein, A., Podolsky, Y., Rosen, N.: Phys. Rev. 47, 777 (1935)ADSCrossRefGoogle Scholar
  4. 4.
    Schrȯdinger, E.: Naturwissenschaften 23, 807 (1935)ADSCrossRefGoogle Scholar
  5. 5.
    Deutsch, D.: Proc. Roy. Soc. 400, 1818 (1985)CrossRefGoogle Scholar
  6. 6.
    Shor, P.W.: Phys. Rev. A 52, R2493 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    Grover, L.K.: Phys. Rev. Lett. 79, 325 (1997)ADSCrossRefGoogle Scholar
  8. 8.
    Feynman, R.: Int. J. Theor. Phys. 21(6/7), 467 (1982)CrossRefGoogle Scholar
  9. 9.
    Lo, H.K., Popescu, S., Spiller, T.: Introduction to quantum computation and information. World Scientific, Singapore (1998)Google Scholar
  10. 10.
    Steane, A.M.: Phys. Rev. Lett. 77, 793 (1996)ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    Curty, M., Lewenstein, M., Lutkenhaus, N.: Phys. Rev. Lett. 92(21), 217903 (2004)ADSCrossRefGoogle Scholar
  12. 12.
    Curty, M., Guhne, O., Lewenstein, M., Lutkenhaus, N.: Phys. Rev. A 71(2), 022306 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Ekert, A.: Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefGoogle Scholar
  14. 14.
    Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: Phys. Rev. Lett. 80, 3891 (1998)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Nature 403, 515 (2000)ADSCrossRefGoogle Scholar
  16. 16.
  17. 17.
    Rieper, E., Anders, J., Vedral, V.: arXiv:http://arXiv.org/abs/1006.4053(2010)
  18. 18.
    Vidal, G., Werner, R.F.: Phys. Rev. A. 65, 032314 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    Hill, S., Wootters, W.K.: J. Phys. Rev. Lett. 78, 5022 (1997)ADSCrossRefGoogle Scholar
  20. 20.
    Peres, A.: Phys. Rev. Lett. 77, 1413 (1996)ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Horodecki, M., Horodecki, P., Horodecki, R.: Phys. Lett. A. 223, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Zyczkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Phys. Rev. A 58, 883 (1998)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Horodecki, M., Horodecki, P., Horodecki, R., Horodecki, K.: Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    Mancini, S., Tombesi, P., V.I.M, V.: Phys. Lett. A. 213, 1 (1996)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    Chernega, V.N., Man’ko, V.I.: J. Russ. Laser Res. 29, 505 (2008)CrossRefGoogle Scholar
  26. 26.
    Chernega, V.N., Man’ko, O.V.: J. Russ. Laser Res. 35(1), 27 (2014)CrossRefGoogle Scholar
  27. 27.
    Chernega, V.N., Man’ko, O.V., Man’ko, V.I.: J. Russ. Laser Res. 35(3), 278 (2014)CrossRefGoogle Scholar
  28. 28.
    Man’ko, V.I., Markovich, L.A.: J. Russ. Laser Res. 35(5), 518 (2014)CrossRefGoogle Scholar
  29. 29.
    Man’ko, V.I., Markovich, L.A.: Physica A 458, 266 (2016)ADSMathSciNetCrossRefGoogle Scholar
  30. 30.
    Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  31. 31.
    Diji, P.: J. Phys. A: Math. Gen. 15, 3465 (1982)ADSCrossRefGoogle Scholar
  32. 32.
    Mazhar, A., Rau, A.R.P., Alber, G.: Phys. Rev. A 81, 042105 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    Hedemann, S.R.: arXiv:http://arXiv.org/abs/1310.7038 (2014)
  34. 34.
    Werner, R.F.: Phys. Rev. A 40, 4277 (1989)ADSCrossRefGoogle Scholar
  35. 35.
    Simon, R.: Phys. Rev. Lett. 84(12), 2726 (2000)ADSCrossRefGoogle Scholar
  36. 36.
    Mancini, S., Man’ko, O.V., Man’ko, V.I., Tombesi, P.: J. Phys. A 34, 3461 (2001)ADSMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.P. N. Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudny Moscow RegionRussia
  3. 3.Institute for information transmission problemsMoscowRussia
  4. 4.V. A. Trapeznikov Institute of Control SciencesMoscowRussia

Personalised recommendations