Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 582–601 | Cite as

The Clifford Algebra of Physical Space and Elko Spinors

  • Jayme VazJr.
Article
  • 108 Downloads

Abstract

Elko spinors are eigenspinors of the charge conjugation operator. In this work we use the Clifford algebra of the physical space in order to formulate the theory of Elko spinors and use a procedure analog to Ryder’s derivation of Dirac equation to come up with an equation for Elko spinor fields. Unlike other works in the literature where an equation for Elko spinor fields has been studied, in this work we obtain a first order differential equation for Elko spinor fields, which resembles but is different from the Dirac equation.

Keywords

Clifford algebras Elko spinors Charge conjugation operator Wave equation Dirac equation 

Notes

Acknowledgements

We are grateful to Dr. R. da Rocha for reading the manuscript, discussions and suggestions.

References

  1. 1.
    Vaz, J., Jr., Rocha, R., Jr.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, London (2016)CrossRefMATHGoogle Scholar
  2. 2.
    Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)CrossRefMATHGoogle Scholar
  3. 3.
    Porteous, I.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)CrossRefMATHGoogle Scholar
  4. 4.
    Majorana, E.: Theory of the symmetry of electrons and positrons. Nuovo Cim. 14, 171–184 (1937)ADSCrossRefGoogle Scholar
  5. 5.
    McLennan, J.A., Jr.: Parity nonconservation and the theory of the neutrino. Phys. Rev 106, 821–822 (1957)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Case, K.M.: Reformulation of the Majorana Theory of the Neutrino. Phys. Rev. 107, 307–316 (1957)ADSMathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Tokuoka, Z.: A proposal of neutrino equation. Prog. Theor. Phys. 37, 603–617 (1967)ADSCrossRefGoogle Scholar
  8. 8.
    Dvoeglazov, V.V.: Lagrangian for the Majorana-Ahluwalia construct. Nuovo Cim. A 108, 1467–1476 (1995)ADSCrossRefGoogle Scholar
  9. 9.
    Dvoeglazov, V.V.: Neutral particles in light of the Majorana-Ahluwalia ideas. Int. J. Theor. Phys. 34, 246702490 (1995)CrossRefMATHGoogle Scholar
  10. 10.
    Ahluwalia, D.V.: Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation. Int. J. Mod. Phys. A 11, 1855–1874 (1996)ADSCrossRefGoogle Scholar
  11. 11.
    Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    Ahluwalia-Khalilova, D.V., Grummiller, D.: Spin half fermions with mass dimension one: theory, phenomenology, and dark matter. JCAP 0507, 012 (2005). arXiv:hep-th/0412080 ADSCrossRefGoogle Scholar
  13. 13.
    da Rocha, R., Rodrigues, W.A. Jr.: Where are Elko spinor fields in Lounesto spinor field classification?. Mod. Phys. Lett. A 21, 65–74 (2006)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Ahluwalia, D.V.: The theory of local mass dimension one fermions of spin one half. Adv. Appl. Clifford Algebr.  https://doi.org/10.1007/s00006-017-0775-1 (2017)
  15. 15.
    Capelas de Oliveira, E., Rodrigues, W.A., Jr., Vaz, J., Jr.: Elko spinor fields and massive magnetic like monopoles. Int. J. Theor. Phys. 53, 4381–4401 (2014)CrossRefMATHGoogle Scholar
  16. 16.
    Vaz, J., Jr.: The Clifford algebra of physical space and Dirac theory. Eur. J. Phys. 37, 055407 (2016)CrossRefMATHGoogle Scholar
  17. 17.
    Ryder, L.H.: Quantum Field Theory, 2nd edn. Cambridge University Press, Cambridge (1996)Google Scholar
  18. 18.
    Baylis, W.E.: The paravector model of spacetime. In: Baylis, W.E. (ed.) Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering, pp. 237–252. Birkhauser, Boston (1996)Google Scholar
  19. 19.
    Baylis, W.E.: Applications of Clifford Algebras in physics. In: Ablamowicz, R., Sobczyk, G. (eds.) Lectures on Clifford (Geometric) and Applications, pp. 91–133. Birkhauser, Boston (2004)CrossRefGoogle Scholar
  20. 20.
    Baylis, W.E.: Geometry of paravector space with applications to relativistic physics. In: Byrnes, J (ed.) Computational Noncommutative Algebra with Applications, pp. 363–387. Kluwer Academic Publishers, Norwell (2004)Google Scholar
  21. 21.
    Baylis, W.E.: Quantum/classical interface: a geometric approach from the classical side. In: Byrnes, J (ed.) Computational Noncommutative Algebra with Applications, pp. 127–154. Kluwer Academic Publishers, Norwell (2004)Google Scholar
  22. 22.
    Vaz, J. Jr.: A Clifford algebra approach to the classical problem of a charge in a magnetic monopole field. Int. J. Theor. Phys. 52, 1440–1454 (2013)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Baylis, W.E., Keselica, J.D.: The complex algebra of physical space: a framework for relativity. Adv. Appl. Clifford Algebras 22, 537–561 (2012)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Greiner, W.: Relativistic quantum mechanics: wave equations, 3rd edn. Springer, Berlin (2000)Google Scholar
  25. 25.
    Gaioli, F.H., Garcia Alvares, E.T.: Some remarks about intrinsic parity in Ryder’s derivation of the Dirac equation. Am. J. Phys. 63, 177–178 (1995)ADSCrossRefGoogle Scholar
  26. 26.
    Greider, K.: Relativistic quantum theory with correct conservation laws. Phys. Rev. Lett. 44, 1718–1721 (1980)ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
    Hestenes, D.: Spacetime Algebra, 2nd edn. Birkhauser, Cambridge (2015)Google Scholar
  28. 28.
    Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2007)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada - IMECCUniversidade Estadual de Campinas (UNICAMP)CampinasBrazil

Personalised recommendations