Skip to main content
Log in

The Clifford Algebra of Physical Space and Elko Spinors

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Elko spinors are eigenspinors of the charge conjugation operator. In this work we use the Clifford algebra of the physical space in order to formulate the theory of Elko spinors and use a procedure analog to Ryder’s derivation of Dirac equation to come up with an equation for Elko spinor fields. Unlike other works in the literature where an equation for Elko spinor fields has been studied, in this work we obtain a first order differential equation for Elko spinor fields, which resembles but is different from the Dirac equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Our use of the indices + −and − +differs slightly from the one of [12] since our first index refers to left component and the second one to right component, which is opposed to [12]. However, this is the natural choice for us because of the relation between left and right components as in (32).

References

  1. Vaz, J., Jr., Rocha, R., Jr.: An Introduction to Clifford Algebras and Spinors. Oxford University Press, London (2016)

    Book  MATH  Google Scholar 

  2. Lounesto, P.: Clifford Algebras and Spinors, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  3. Porteous, I.: Clifford Algebras and the Classical Groups. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  4. Majorana, E.: Theory of the symmetry of electrons and positrons. Nuovo Cim. 14, 171–184 (1937)

    Article  ADS  Google Scholar 

  5. McLennan, J.A., Jr.: Parity nonconservation and the theory of the neutrino. Phys. Rev 106, 821–822 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Case, K.M.: Reformulation of the Majorana Theory of the Neutrino. Phys. Rev. 107, 307–316 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Tokuoka, Z.: A proposal of neutrino equation. Prog. Theor. Phys. 37, 603–617 (1967)

    Article  ADS  Google Scholar 

  8. Dvoeglazov, V.V.: Lagrangian for the Majorana-Ahluwalia construct. Nuovo Cim. A 108, 1467–1476 (1995)

    Article  ADS  Google Scholar 

  9. Dvoeglazov, V.V.: Neutral particles in light of the Majorana-Ahluwalia ideas. Int. J. Theor. Phys. 34, 246702490 (1995)

    Article  MATH  Google Scholar 

  10. Ahluwalia, D.V.: Theory of neutral particles: McLennan-Case construct for neutrino, its generalization, and a fundamentally new wave equation. Int. J. Mod. Phys. A 11, 1855–1874 (1996)

    Article  ADS  Google Scholar 

  11. Bertone, G., Hooper, D., Silk, J.: Particle dark matter: evidence, candidates and constraints. Phys. Rep. 405, 279–390 (2005)

    Article  ADS  Google Scholar 

  12. Ahluwalia-Khalilova, D.V., Grummiller, D.: Spin half fermions with mass dimension one: theory, phenomenology, and dark matter. JCAP 0507, 012 (2005). arXiv:hep-th/0412080

    Article  ADS  Google Scholar 

  13. da Rocha, R., Rodrigues, W.A. Jr.: Where are Elko spinor fields in Lounesto spinor field classification?. Mod. Phys. Lett. A 21, 65–74 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Ahluwalia, D.V.: The theory of local mass dimension one fermions of spin one half. Adv. Appl. Clifford Algebr. https://doi.org/10.1007/s00006-017-0775-1 (2017)

  15. Capelas de Oliveira, E., Rodrigues, W.A., Jr., Vaz, J., Jr.: Elko spinor fields and massive magnetic like monopoles. Int. J. Theor. Phys. 53, 4381–4401 (2014)

    Article  MATH  Google Scholar 

  16. Vaz, J., Jr.: The Clifford algebra of physical space and Dirac theory. Eur. J. Phys. 37, 055407 (2016)

    Article  MATH  Google Scholar 

  17. Ryder, L.H.: Quantum Field Theory, 2nd edn. Cambridge University Press, Cambridge (1996)

  18. Baylis, W.E.: The paravector model of spacetime. In: Baylis, W.E. (ed.) Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering, pp. 237–252. Birkhauser, Boston (1996)

    Google Scholar 

  19. Baylis, W.E.: Applications of Clifford Algebras in physics. In: Ablamowicz, R., Sobczyk, G. (eds.) Lectures on Clifford (Geometric) and Applications, pp. 91–133. Birkhauser, Boston (2004)

    Chapter  Google Scholar 

  20. Baylis, W.E.: Geometry of paravector space with applications to relativistic physics. In: Byrnes, J (ed.) Computational Noncommutative Algebra with Applications, pp. 363–387. Kluwer Academic Publishers, Norwell (2004)

    Google Scholar 

  21. Baylis, W.E.: Quantum/classical interface: a geometric approach from the classical side. In: Byrnes, J (ed.) Computational Noncommutative Algebra with Applications, pp. 127–154. Kluwer Academic Publishers, Norwell (2004)

    Google Scholar 

  22. Vaz, J. Jr.: A Clifford algebra approach to the classical problem of a charge in a magnetic monopole field. Int. J. Theor. Phys. 52, 1440–1454 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Baylis, W.E., Keselica, J.D.: The complex algebra of physical space: a framework for relativity. Adv. Appl. Clifford Algebras 22, 537–561 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Greiner, W.: Relativistic quantum mechanics: wave equations, 3rd edn. Springer, Berlin (2000)

  25. Gaioli, F.H., Garcia Alvares, E.T.: Some remarks about intrinsic parity in Ryder’s derivation of the Dirac equation. Am. J. Phys. 63, 177–178 (1995)

    Article  ADS  Google Scholar 

  26. Greider, K.: Relativistic quantum theory with correct conservation laws. Phys. Rev. Lett. 44, 1718–1721 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hestenes, D.: Spacetime Algebra, 2nd edn. Birkhauser, Cambridge (2015)

  28. Doran, C., Lasenby, A.: Geometric Algebra for Physicists. Cambridge University Press, Cambridge (2007)

    MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. R. da Rocha for reading the manuscript, discussions and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayme Vaz Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaz, J. The Clifford Algebra of Physical Space and Elko Spinors. Int J Theor Phys 57, 582–601 (2018). https://doi.org/10.1007/s10773-017-3591-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3591-4

Keywords

Navigation