Advertisement

International Journal of Theoretical Physics

, Volume 57, Issue 2, pp 506–515 | Cite as

Controlled Remote State Preparation of an Arbitrary Two-Qubit State by Using Two Sets of Four-Qubit GHZ States

  • Yun-Guang Zhang
  • Ge Dou
  • Xin-Wei Zha
Article

Abstract

Recently, Huang and Zhao (Int. J. Theor. Phys. 56, 678, 2017) proposed a new scheme for controlled remote state preparation of an arbitrary two-qubit state by using two sets of three-qubit GHZ states as the quantum channel. In the scheme, Alice and Bob choose four different kinds of two-qubit projective measurement bases to measure their local qubits, respectively. We demonstrate that two sets of four-qubit GHZ states can be used to realize the deterministic controlled remote state preparation of an arbitrary two-qubit state by performing only two-qubit projective measurements.

Keywords

Controlled remote state preparation GHZ state Arbitrary two-qubit state 

Notes

Acknowledgments

The work is supported by the Program for New Scientific and Technological Star of Shaanxi Province (Grant No. 2012KJXX-39).

References

  1. 1.
    Yang, C.P., Chu, S.I., Han, S.: Efficient many-party controlled teleportation of multiqubit quantum information via entanglement. Phys. Rev. A 70, 022329 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Zhang, Z.J.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A 352, 55 (2006)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14, 893 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)ADSMathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Deng, F.G., Li, X.H., Li, C.Y.: Quantum state sharing of an arbitrary two-qubit state with two-photon entanglements and Bell-state measurements. Eur. Phys. J. D 39, 459 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quant. Inf. Proc. 15, 929 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Li, Y.H., Li, X.L., Nie, L.P., Sang, M.H.: Quantum teleportation of three and four-qubit state using multi-qubit cluster states. Int. J. Theor. Phys. 55, 1820 (2016)CrossRefMATHGoogle Scholar
  9. 9.
    Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. Phys. Rev. A 68, 557 (1992)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)ADSCrossRefGoogle Scholar
  12. 12.
    Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A 70, 012311 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    Li, X.H., Deng, F.G., Zhou, H.Y.: Efficient quantum key distribution over a collective noise channel. Phys. Rev. A 78, 022321 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRefGoogle Scholar
  15. 15.
    Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)ADSMathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 521 (2004)CrossRefGoogle Scholar
  17. 17.
    Deng, F.G., Zhou, H., Long, G.L.: Circular quantum secret sharing. J. Phys. A: Math. Gen. 39, 14089 (2007)ADSMathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Ping, K.L.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky- Rosen pair block. Phys. Rev. A 68, 042317 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with highdimensio quantum superdense coding. Phys. Rev. A 71, 044305 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    Wang, T.J., Li, T., Du, F.F., Deng, F.G.: High-capacity quantum secure direct communication based on quantum hyperdense coding with hyperentanglement. Chin. Phys. Lett. 28, 040305 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    Gu, B., Huang, Y.G., Fang, X., Zhang, C.Y.: A two-step quantum secure direct communication protocol with hyperentanglement. Chin. Phys. B 20, 100309 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)ADSCrossRefGoogle Scholar
  25. 25.
    Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    Abeyesinghe, A., Hayden, P.: Generalized remote state preparation: trading cbits, qubits, and ebits in quantum communication. Phys. Rev. A 68, 062319 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    Zhao, H.X., Huang, L.: Effects of noise on joint remote state preparation of an arbitrary equatorial two-qubit state. Int. J. Theor. Phys. 56, 720 (2016)CrossRefMATHGoogle Scholar
  29. 29.
    Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)ADSCrossRefGoogle Scholar
  30. 30.
    Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B: At. Mol. Opt. Phys. 44, 075501 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B: At. Mol. Opt. Phys. 41, 095501 (2008)ADSCrossRefGoogle Scholar
  32. 32.
    Hou, K., Li, Y.B., Liu, G.H., Sheng, S.Q.: Joint remote state preparation of arbitrary two-qubit state via GHZ-type states. J. Phys. A: Math. Theor. 44, 255304 (2011)ADSMathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Chen, Q.Q., Xia, Y., An, N.B.: Flexible deterministic joint remote state preparation with a passive receiver. Phys. Scr. 87, 025005 (2013)ADSCrossRefMATHGoogle Scholar
  34. 34.
    Xia, Y., Chen, Q.Q., An, N.B.: Deterministic joint remote preparation of an arbitrary three-qubit state via Einstein CPodolsky CRosen pairs with a passive receiver. J. Phys. A: Math. Theor. 45, 335306 (2012)CrossRefMATHGoogle Scholar
  35. 35.
    Wang, D., Ye, L.: Probabilistic joint remote preparation of four-particle cluster-type states with Quaternate partially entangled channels. Int. J. Theor. Phys. 51, 3376 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Luo, M.X., Deng, Y.: Joint remote preparation of an arbitrary 4-qubit x-state. Int. J. Theor. Phys. 51, 3027 (2012)MathSciNetCrossRefMATHGoogle Scholar
  37. 37.
    Su, Y., Chen, X.B., Yang, Y.Y.: N-to-M joint remote state preparation of 2-level states. Int. J. Quant. Inf. 10, 1250006 (2012)MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quant. Inf. Proc. 12, 2325 (2013)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Chen, X.B., Ma, S.Y., Yuan, S.Y., Zhang, R., Yang, Y.X.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quant. Inf. Proc. 11, 1653 (2012)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Zhan, Y.B., Hu, B.L., Ma, P.C.: Joint remote preparation of four-qubit cluster-type states. J. Phys. B: At. Mol. Opt. Phys. 44, 095501 (2011)ADSCrossRefGoogle Scholar
  41. 41.
    Xiao, X.Q., Liu, J.M., Zeng, G.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B: At. Mol. Opt. Phys. 44, 075501 (2011)ADSCrossRefGoogle Scholar
  42. 42.
    An, N.B.: Joint remote state preparation via W and W-type states. Opt. Commun. 283, 4113 (2010)ADSCrossRefGoogle Scholar
  43. 43.
    Wei, J.H., Dai, H.Y., Zhang, M.: Two efficient schemes for probabilistic remote state preparation and the combination of both schemes. Quant. Inf. Proc. 13, 2115 (2014)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quant. Inf. Proc. 14, 1077 (2015)MathSciNetCrossRefMATHGoogle Scholar
  45. 45.
    Zhan, Y.B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quant. Inf. Proc. 12, 997 (2013)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Deterministic remote preparation of an arbitrary W-class state with multiparty. Opt. Commun. 283, 4796 (2010)ADSCrossRefGoogle Scholar
  47. 47.
    Ma, S.Y., Chen, X.B., Luo, M.X., Zhang, R., Yang, Y.X.: Remote preparation of a four-particle entangled cluster-type state. Opt. Commun. 284, 4088 (2011)ADSCrossRefGoogle Scholar
  48. 48.
    Huang, L., Zhao, H.X.: Controlled remote state preparation of an arbitrary two-qubit state by using GHZ states. Int. J. Theor. Phys. 56, 678 (2017)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of ScienceXi’an Institute of Posts and TelecommunicationsXi’anChina

Personalised recommendations