Skip to main content
Log in

τ-lepton as a Composition of Massless Preons: an Alternative to Higgs Mechanism

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Within the framework of the confinement mechanism proposed earlier by the author in QCD the problem of masses for fundamental fermions in particle physics is discussed by the example of τ-lepton τ . It is shown that the observed parameters of τ-lepton such as its mass and magnetic moment can be obtained in a preon model dynamically due to a preon gauge interaction. The radius of τ-lepton is also estimated. Under the circumstances preons might be massless in virtue of existence of the nonzero chiral limit for the preon interaction energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Dugne, J.-J., Fredriksson, S., Hansson, J.: Europhys. Lett. 57, 188 (2002)

    Article  ADS  Google Scholar 

  2. Perkins, D.H. Introduction to High Energy Physics. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  3. Goncharov, Yu.P.: Mod. Phys. Lett. A 16, 557 (2001)

    Article  MathSciNet  Google Scholar 

  4. Goncharov, Yu.P.: Phys. Lett. B 617, 67 (2005)

    Article  ADS  Google Scholar 

  5. Goncharov, Yu.P. New Developments in Black Hole Research Chap. 3. In: Kreitler, P.V. (ed.) , pp. 67–121. Nova Science Publishers, New York (2006). arXiv:hep-th/0512099

  6. Sánchez-Monroy, J.A., Quimbay, C.J.: Ann. Phys 327, 2166 (2012)

    Article  MATH  ADS  Google Scholar 

  7. Wilson, K.: Phys. Rev. D 10, 2445 (1974)

    Article  ADS  Google Scholar 

  8. Bander, M.: Phys. Rep. 75, 205 (1981)

    Article  ADS  Google Scholar 

  9. Goncharov, Yu.P.: Nucl. Phys. A 808, 73 (2008)

    Article  ADS  Google Scholar 

  10. Goncharov, Yu.P.: Nucl. Phys. A 812, 99 (2008)

    Article  ADS  Google Scholar 

  11. Goncharov, Yu.P.: Eur. Phys. J. A 46, 139 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Goncharov, Yu.P.: Int. J. Theor. Phys. 51, 428 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Goncharov, Yu.P., Pavlov, F.F. Horizons in World Physics 281 Chap. 9. In: Reimer, A. (ed.) , pp. 173–196. Nova Science Publishers, New York (2013)

  14. Goncharov, Yu.P., Pavlov, F.F.: Few-Body Syst. 55, 35 (2014)

    Article  ADS  Google Scholar 

  15. Goncharov, Yu.P. Recent Advances in Quarks Research Chap. 3. In: Fujikage, H., Hyobanshi, K. (eds.) , pp. 13–61. Nova Science Publishers, New York (2013). arXiv:1312.4049

  16. Beringer, J.J., et al.: Particle Data Group. Phys Rev. D 86, 010001 (2012)

    Article  ADS  Google Scholar 

  17. Deur, A.: Nucl. Phys. A 755, 353 (2005)

    Article  ADS  Google Scholar 

  18. Deur, A., et. al.: Phys. Lett. B 650, 244 (2007)

    Article  ADS  Google Scholar 

  19. Landau, L.D., Lifshits, E.M. Field Theory, Nauka Moscow (1988)

  20. Vilenkin, N.Ya.: Special Functions and Theory of Group Representations, Nauka Moscow (1991)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri P. Goncharov.

Appendix

Appendix

In Subsection 2.3 we built the three-body leptonic wave functions as tensorial products from the two-body wave functions of premesons. The latter, however, are represented by triplets ψ of 4D-Dirac spinors [see, e.g., (2)], so ψ belongs to the Hilbert space \({\mathcal H}=L_{2}^{12}({\mathbb R}^{3})\). Under the situation we here recall some facts about tensorial products of Hilbert spaces necessary for building the lepton wave functions. For more information see, e.g., [20] and references therein.

For two Hilbert spaces \({\mathcal H}_{1}\) and \({\mathcal H}_{2}\), by definition, their tensorial product \({\mathcal H}_{1}\otimes {\mathcal H}_{2}\) consists from every possible linear combinations of elements of the form x 1x 2, where \(\mathrm {\mathbf {x}}_{1}\in {\mathcal H}_{1}\), \(\mathrm {\mathbf {x}}_{2}\in {\mathcal H}_{2}\). The obvious relations take place

$$ (\alpha\mathrm{\mathbf{x}}_{1}+\beta\mathrm{\mathbf{x}}_{2})\otimes\mathrm{\mathbf{y}}=\alpha(\mathrm{\mathbf{x}}_{1}\otimes\mathrm{\mathbf{y}})+ \beta(\mathrm{\mathbf{x}}_{2}\otimes\mathrm{\mathbf{y}})\>, $$
(A.1)
$$ x\otimes(\alpha\mathrm{\mathbf{y}}_{1}+\beta\mathrm{\mathbf{y}}_{2})=\alpha(\mathrm{\mathbf{x}}\otimes\mathrm{\mathbf{y}}_{1})+ \beta(\mathrm{\mathbf{x}}\otimes\mathrm{\mathbf{y}}_{2}) $$
(A.2)

with arbitrary complex numbers α, β.

Scalar product in \({\mathcal H}_{1}\otimes {\mathcal H}_{2}\) is defined by the equality

$$ (\mathrm{\mathbf{x}}_{1}\otimes\mathrm{\mathbf{y}}_{1},\mathrm{\mathbf{x}}_{2}\otimes\mathrm{\mathbf{y}}_{2})= (x_{1},x_{2})_{1}(y_{1},y_{2})_{2}\>, $$
(A.3)

where (x 1, x 2)1, (y 1, y 2)2 are the scalar products, respectively, in \({\mathcal H}_{1}\) and \({\mathcal H}_{2}\). Under the situation, if {e i } is an orthonormal basis in \({\mathcal H}_{1}\) and {f j } is an orthonormal basis in \({\mathcal H}_{2}\) then h ij = e i f j is an orthonormal basis in \({\mathcal H}_{1}\otimes {\mathcal H}_{2}\).

Further, if A is a linear operator in \({\mathcal H}_{1}\) and B is a linear operator in \({\mathcal H}_{2}\) then tensorial (Kronecker) product AB acts in \({\mathcal H}_{1}\otimes {\mathcal H}_{2}\) and is defined by relation (AB)(x 1x 2) = A x 1B x 2 with the properties

$$ A\otimes(\alpha B_{1}+\beta B_{2})=\alpha A\otimes B_{1}+ \beta A\otimes B_{2}\>, $$
(A.4)
$$ (\alpha A_{1}+\beta A_{2})\otimes B=\alpha A_{1}\otimes B+ \beta A_{2}\otimes B\>, $$
(A.5)
$$ A_{1}A_{2}\otimes B_{1}B_{2}=(A_{1}\otimes B_{1}) (A_{2}\otimes B_{2})\>. $$
(A.6)

In a similar way, the Kronecker sum of A and B is defined by AB = AI + IB with identical operator I. Under the circumstances, let λ i be the eigenvalues A and μ j be those of B (listed according to multiplicity). Then the eigenvalues of AB are λ i μ j while those of AB will be λ i + μ j .

All the above is directly generalized to the arbitrary number of Hilbert spaces. For example, the operator A 1II + IA 2I + IIA 3 has the eigenvalues λ i + μ j + ν k in space \({\mathcal H}_{1}\otimes {\mathcal H}_{2}\otimes {\mathcal H}_{3}\) if λ i , μ j , ν k are the eigenvalues of A 1, A 2 and A 3, respectively, in \({\mathcal H}_{1}\), \({\mathcal H}_{2}\), \({\mathcal H}_{3}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goncharov, Y.P. τ-lepton as a Composition of Massless Preons: an Alternative to Higgs Mechanism. Int J Theor Phys 54, 3131–3142 (2015). https://doi.org/10.1007/s10773-015-2551-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2551-0

Keywords

Navigation