Skip to main content
Log in

Three-dimensional Quantum Slit Diffraction and Diffraction in Time

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We derive a self-consistent formula for the quantum propagator of the quantum diffraction by a reflecting (or non-absorbing) screen with an arbitrary aperture, in the transmission region. To achieve this, we use the Green function approach (Brukner and Zeilinger, Phys. Rev. A. 56(5), 3804–3824 1997) that we extend to mixed boundary conditions (including Dirichlet and Neumann) on the shutter’s screen and to any initial wave functions, such as Gaussian wave packets. To illustrate our results, we apply this method to the famous rectangular slit diffraction problem. It allows us to take into account the effect of the quantum nature of the motion perpendicular to the screen where the diffraction-in-time phenomenon appears in this direction. Then we derive corrections to the standard semi-classical formula and the diffraction pattern. We also point out situations in which this might be observable. In particular, we discuss the diffraction in space and time in the presence of gravity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jönsson, C.: Elektroneninterferenzen an mehreren künstlich hergestellten Feinspalten. Z. Phys. 161 (4), 454–474 (1961)

    Article  ADS  Google Scholar 

  2. Jönsson, C.: Electron Diffraction at Multiple Slits. Am. J. Phys. 42 (1), 4–11 (1974)

    Article  ADS  Google Scholar 

  3. Donati, O., Missiroli, G. F., Pozzi, G.: An Experiment on Electron Interference. Am. J. Phys. 41, 639–644 (1973)

    Article  ADS  Google Scholar 

  4. Merli, P. G., Missiroli, G. F., Pozzi, G.: On the statistical aspect of electron interference phenomena. Am. J. Phys. 44 (3), 306–307 (1976)

    Article  ADS  Google Scholar 

  5. Tonomura, A., Endo, J., Ezawa, H., Matsuda, T., Kawasaki, T.: Demonstration of single-electron buildup of an interference pattern. Am. J. Phys. 57 (2), 117–120 (1989)

    Article  ADS  Google Scholar 

  6. Feynman, R. P., Leighton, R. B., Sands, M. L.: The Feynman Lectures on Physics. Addison-Wesley, Reading, MA (1965)

    MATH  Google Scholar 

  7. Bach, R., Pope, D., Liou, S.-H., Batelaan, H.: Controlled double-slit electron diffraction. New J. Phys. 15, 033018 (2013)

    Article  ADS  Google Scholar 

  8. Frabboni, S., Frigeri, C., Gazzadi, G. C., Pozzi, G.: Two and three slit electron interference and diffraction experiments. Am. J. Phys. 79 (6), 615–618 (2011)

    Article  ADS  Google Scholar 

  9. Zeilinger, A., Gähler, R., Shull, C. G., Treimer, W., Mampe, W.: Single- and double-slit diffraction of neutrons. Rev. Mod. Phys. 60 (4), 1067–73 (1988)

    Article  ADS  Google Scholar 

  10. Shimizu, F., Shimizu, K., Takuma, H.: Double-slit interference with ultracold metastable neon atoms. Phys. Rev. A. 46 (1), R17–R20 (1992)

    Article  ADS  Google Scholar 

  11. Nairz, O., Arndt, M., Zeilinger, A.: Quantum interference experiments with large molecules. Am. J. Phys. 71 (4), 319–325 (2003)

    Article  ADS  Google Scholar 

  12. Feynman, R. P., Hibbs, A. R., 3rd edn: Quantum Mechanics and Path Integrals. McGraw-Hill, New York (1965)

    MATH  Google Scholar 

  13. Barut, A. O., Basri, S.: Path integrals and quantum interference. Am. J. Phys. 60 (10), 896–899 (1992)

    Article  ADS  Google Scholar 

  14. Beau, M.: Feynman path integral and electron diffraction slit experiments. Eur. Journ. Phys. 33 (15), 1023–1039 (2012)

    Article  ADS  MATH  Google Scholar 

  15. Zecca, A.: Two-Slit Diffraction Pattern for Gaussian Wave Packets. Int. J. Theo. Phys. 38 (3), 911–918 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Moshinsky, M.: Diffraction in Time. Phys. Rev. 88 (3), 625–631 (1952)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Szriftgiser, P., Guéry-Odelin, D., Arndt, M., Dalibard, J.: Atomic Wave Diffraction and Interference Using Temporal Slits. Phys. Rev. Lett. 77 (1), 4–7 (1996)

    Article  ADS  Google Scholar 

  18. Hils, Th., Hils, Al: Matter-wave optics in the time domain: Results of a cold-neutron experiment. Phys. Rev. A 58 (6), 4784 (1998)

    Article  ADS  Google Scholar 

  19. Brukner, C., Zeilinger, A.: Diffraction of matter waves in space and in time. Phys. Rev. A. 56 (5), 3804–3824 (1997)

    Article  ADS  Google Scholar 

  20. Morse, P. M., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  21. Goussev, A.: Huygens-Fresnel-Kirchhoff construction for the quantum propagator with application to diffraction in space and time. Phys. Rev. A. 85 (1), 013626–013636 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  22. Goussev, A.: Time diffraction: an exact model. Phys. Rev. A. 87 (5), 053621 (2013)

    Article  ADS  Google Scholar 

  23. del Campo, A., Muga, J. G.: Single-particle matter wave pulses. J. Phys. A: Math. Gen. 38 (45), 9803–9819 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  24. del Campo, A., Muga, J. G., Moshinsky, M.: Time modulation of atom sources. J. Phys. B: At. Mol. Opt. Phys. 40, 975 (2007)

    Article  ADS  Google Scholar 

  25. Kälbermann, G.: Single- and double-slit scattering of wavepackets. J. Phys. A: Math. Gen. 35 (21), 4599–4616 (2002)

    Article  ADS  MATH  Google Scholar 

  26. Kälbermann, G.: Diffraction of wave packets in space and time. J. Phys. A: Math. Gen. 34 (33), 6465–6480 (2001)

    Article  ADS  MATH  Google Scholar 

  27. Kälbermann, G.: Wave packet diffraction in the KronigPenney model. J. Phys. A: Math. Gen. 35 (4), 1045–1053 (2002)

    Article  ADS  MATH  Google Scholar 

  28. del Campo, A., García-Calderón, G., Mugad, J.G.: Quantum transients. Phys. Rep. 476 (1–3), 1–50 (2009)

    Article  ADS  Google Scholar 

  29. Torrontegui, E., Muoz, J., Ban, Y., Muga, J. G.: Explanation and observability of diffraction in time, Vol. 83, p 043608 (2011)

  30. Baker, B. B., Copson, E. T., 2nd edn: The mathematical theory of Huygens’ principle. Clarendon Press, Oxford (1950)

    MATH  Google Scholar 

  31. Gondran, M., Gondran, A.: Numerical simulation of the double slit interference with ultracold atoms. Am. J. Phys. 73 (6), 507–515 (2005)

    Article  ADS  Google Scholar 

  32. Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions. Dover, New York (1965)

    Google Scholar 

  33. Born, M., Wolf, E., 4th edn: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Pergamon, Oxford (1969)

    Google Scholar 

  34. Erdelyi, A.: Tables of Integral Transforms, vol. 1. McGraw-Hill Inc, US (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Beau.

Appendices

Appendix 1: The Truncation Approximation for the Quantum-Multi-Slit Diffraction Problem

We recall [14] that the single “gate” slit propagator, centered on the x-axis of size 2a on the z-axis and 2b on the y-axis is given by the following formula [14]:

$$\begin{array}{@{}rcl@{}} &&K_{\text{Trunc}}^{(a,b)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1},t_{c})=\\ &&{\kern15pt} \frac{e^{i\frac{m(x-x_{0})^{2}}{2\hbar t}}}{(2i\pi\hbar t/m)^{1/2}} {\int}_{-a}^{a}dz_{1} {\int}_{-b}^{b}dy_{1} \frac{e^{i\frac{m[(y-y_{1})^{2}+(z-z_{1})^{2}]}{2\hbar(t-t_{c})}}}{2i\pi\hbar(t-t_{c})/m} \frac{e^{i\frac{m[(y_{1}-y_{0})^{2}+(z_{1}-z_{0})^{2}]}{2\hbar t_{c}}}}{2i\pi\hbar t_{c}/m}\ , \end{array} $$
(70)

where t c =|x 1x 0|t/|xx 0|. We note that this formula is valid only if the distances on the x-axis are very large compared to the distance on the screen and to the sizes of the slit, i.e. for |xx 1|,|x 1x 0|≫a,b,|y|,|z|. The formula (70) can be interpreted as follows: The propagator is the sum over the paths x(τ) of the particle going from the source (x(0)=x 0,z(0)=z 0,y(0)=y 0) to the screen (x(t)=x,z(t)=z,y(t)=y), given that it goes through the slit x(t c )=x 1, z(t c )=z 1∈[−a,a], y(t c )=y 1∈[−b,b] at the time t c defined just above. Notice that we can find an explicit formula for the propagator (70) in terms of the Fresnel function [12], [14]:

$$ K_{\text{Trunc}}^{(a,b)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1},t_{c})= \frac{e^{im\frac{|\mathrm{r}-\mathrm{r}_{0}|^{2}}{2\hbar t}}}{(2i\pi\hbar t/m)^{3/2}} F_{t,t_{c}}(z,a)F_{t,t_{c}}(y,b) $$
(71)

where:

$$ F_{t,t_{c}}(z,a)\equiv \left(C[\alpha_{t,t_{c}}(z,a)]+C[\alpha_{t,t_{c}}(z,-a)]+iS[\alpha_{t,t_{c}}(z,a)]+iS[\alpha_{t,t_{c}}(z,-a)]\right) $$
(72)

and where the Fresnel functions are defined as follows [32]: \(C[u]={{\int }_{0}^{u}}dw\ \cos {(\frac {\pi w^{2}}{2})}\), and \(S[u]={{\int }_{0}^{u}}dw\ \sin {(\frac {\pi w^{2}}{2})}\). Since we have seen that \(\lambda \approx 2\pi \hbar /mv_{x}\) with v x =|xx 0|/t and t c ≈|x 1x 0|/v x =|x 1x 0|t/|xx 0|, the function \(\alpha _{t,t_{c}}(z,a)\) in (72) can be written as follows :

$$ \alpha_{t,t_{c}}(z,a)\equiv \sqrt{\gamma N_{F}}\left(1-\frac{z}{a\gamma}\right)\ , $$
(73)

where γ=|xx 0|/|x 1x 0| and where the Fresnel number is defined as N F ≡2a 2/(λ L), where L=|xx 1|.

For a narrow Gaussian wave packet (i.e., in the limit σ→0), the intensity on the screen is proportional to the modulus square of the propagator, and is given by[14]:

$$ I_{\text{Trunc}}^{(a,b)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1},t_{c})| =I_{0}\left(\frac{m}{2\pi\hbar t}\right)^{3}|F_{t,t_{c}}(z,a)|^{2}|F_{t,t_{c}}(y,b)|^{2} $$
(74)

In [14] three distinct regimes were considered depending on the value of the Fresnel number:

  1. (i)

    If N F ≪1: we have the Fraunhofer regime, which means that the distances are sufficiently large to get a usual interference pattern [33] where the distance between two consecutive minima of intensity are about λ L/(2a) in the z-direction and λ L/(2b) in the y-direction.

  2. (ii)

    If N F ≫1: we are in the so-called Fresnel regime where the interference pattern has a similar shape as the gate but with a different scale: a(γ−1) in the z-direction and b(γ−1) in the y-direction. More specifically, the intensity is very small if z>a(γ−1) and y>b(γ−1) and oscillate very fast around a constant if z<a(γ−1) and y<b(γ−1).

  3. (iii)

    If N F ∼1: the intermediate regime is a transition between both regimes for which there is a spreading around the center of the intensity and similar to the Fraunhofer regime for large distances (on the screen).

The formula for the multi-slit problem is given by the sum over the single-slit propagator for each slit (centered in (A j ,B j ), j=1,..,N) and then to get the interference pattern on the screen, we have to compute the square modulus of the N-slit propagator.

Appendix 2: Derivation of the Point-Source Propagator

By (17), the point-source propagator is given by

$$\begin{array}{@{}rcl@{}} K(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1})&\equiv& {{\int}_{0}^{t}} d\tau\left[\frac{-x_{0}}{\tau}\eta_{1}+\frac{x}{t-\tau}\eta_{2}\right]G_{0}(\mathrm{r}-\mathrm{r}_{1},t-\tau)G_{0}(\mathrm{r}_{1}-\mathrm{r}_{0},\tau) \end{array} $$
(75)
$$\begin{array}{@{}rcl@{}} =\eta_{2}K^{(D)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1}) +\eta_{1}K^{(N)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1}) \end{array} $$
(76)

where we have introduced the Dirichlet part:

$$\begin{array}{@{}rcl@{}} K^{(D)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1}) ={{\int}_{0}^{t}} d\tau\left[\frac{x}{t-\tau}\right]G_{0}(\mathrm{r}-\mathrm{r}_{1},t-\tau)G_{0}(\mathrm{r}_{1}-\mathrm{r}_{0},\tau) \end{array} $$
(77)

and the Neumann part:

$$\begin{array}{@{}rcl@{}} K^{(N)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1}) ={{\int}_{0}^{t}} d\tau\left[\frac{-x_{0}}{\tau}\right]G_{0}(\mathrm{r}-\mathrm{r}_{1},t-\tau)G_{0}(\mathrm{r}_{1}-\mathrm{r}_{0},\tau) \end{array} $$
(78)

We will use the Laplace transform defined by

$$\begin{array}{@{}rcl@{}} LT\left[f(\tau);\tau,s\right]={\int}_{0}^{+\infty}d\tau\ e^{-s\tau}f(\tau) \end{array} $$

and the inverse Laplace transform

$$\begin{array}{@{}rcl@{}} LT^{-1}\left[F(s);s,\tau\right]={\int}_{c-i\infty}^{c+i\infty}\frac{ds}{2i\pi}\ e^{\tau s}F(s), \end{array} $$

where c is a real-valued constant chosen such that the integral remains finite. We have the following Laplace transforms (see equations (28) P.147 §4.5 and (5) P.246 §5.6 in [34]):

$$\begin{array}{@{}rcl@{}} LT\left[\left(\frac{m}{2i\pi\hbar t}\right)^{3/2}e^{i\frac{m|\mathrm{r}|^{2}}{2\hbar t}};t,s\right]= \frac{e^{i|\mathrm{r}|\sqrt{2mis/\hbar}}}{2i\pi\hbar|\mathrm{r}|/m} \end{array} $$
(79)
$$\begin{array}{@{}rcl@{}} LT\left[\frac{1}{t}\left(\frac{m}{2i\pi\hbar t}\right)^{3/2}e^{i\frac{m|\mathrm{r}|^{2}}{2\hbar t}};t,s\right]= \frac{e^{i|\mathrm{r}|\sqrt{2mis/\hbar}}}{2i\pi|\mathrm{r}|^{2}}\left(-\sqrt{2mis/\hbar}+\frac{i}{|\mathrm{r}|}\right) \end{array} $$
(80)

So by (78) and (79) we get

$$\begin{array}{@{}rcl@{}} &&K^{(N)}(\mathrm{r},t;\mathrm{r}_{0},0|\mathrm{r}_{1})\\ &=&\frac{-m x_{0}}{\hbar}\times LT^{-1} \left[\frac{e^{i|\mathrm{r}-\mathrm{r}_{1}|\sqrt{2m i s/\hbar}}}{2i\pi|\mathrm{r}-\mathrm{r}_{1}|} \frac{e^{i|\mathrm{r}_{1}-\mathrm{r}_{0}|\sqrt{2m i s/\hbar}}}{2i\pi|\mathrm{r}_{1}-\mathrm{r}_{0}|^{2}} \left(-\sqrt{2mis/\hbar}+\frac{i}{|\mathrm{r}_{1}-\mathrm{r}_{0}|}\right);s,t\right] \end{array} $$
(81)

then using the inversion formulas (79), we get (18) where the amplitude is given by (21) and the phase by (19).

Similary for the Dirichlet boundary condition, by the symmetries t 1tt 1 and u 1u 2 in (81), we get that the amplitude is given by (22) and that the phase does not change and is given by (19).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beau, M., Dorlas, T.C. Three-dimensional Quantum Slit Diffraction and Diffraction in Time. Int J Theor Phys 54, 1882–1907 (2015). https://doi.org/10.1007/s10773-014-2394-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2394-0

Keywords

Navigation