Advertisement

International Journal of Theoretical Physics

, Volume 53, Issue 10, pp 3531–3545 | Cite as

Uniform Continuity of POVMs

  • Roberto Beneduci
Article

Abstract

Recently a characterization of uniformly continuous POVMs and a necessary condition for a uniformly continuous POVM F to have the norm-1 property have been provided. Moreover it was proved that in the commutative case, uniform continuity corresponds to the existence of a Feller Markov kernel. We apply such results to the analysis of some relevant physical examples; i.e., the phase space localization observables, the unsharp phase observable and the unsharp number observable of which we study the uniform continuity, the norm-1 property and the existence of a Feller Markov kernel.

Keywords

Positive operator valued measures Unsharp quantum observables Feller Markov kernels 

References

  1. 1.
    Ali, S.T.: A geometrical property of POV-measures and systems of covariance. In: Doebner, H.-D., Andersson, S.I., Petry, H.R. (eds.) Differential Geometric Methods in Mathematical Physics. Lecture Notes in Mathematics, vol. 905, pp. 207–228. Springer, Berlin (1982) CrossRefGoogle Scholar
  2. 2.
    Ali, S.T., Emch, G.G.: J. Math. Phys. 15, 176 (1974) ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Ali, S.T., Prugovečki, E.: Physica A 89, 501–521 (1977) ADSCrossRefMathSciNetGoogle Scholar
  4. 4.
    Ali, S.T., Carmeli, C., Heinosaari, T., Toigo, A.: Found. Phys. 39, 593–612 (2009) ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Beneduci, R.: Semispectral measures and Feller Markov kernels (2012). arXiv:1207.0086v1
  6. 6.
    Beneduci, R., Schroeck, F. Jr.: A note on the relationship between localization and the norm-1 property. J. Phys. A, Math. Theor. 46, 305303 (2013) CrossRefMathSciNetGoogle Scholar
  7. 7.
    Beneduci, R., Nisticó, G.: J. Math. Phys. 44, 5461 (2003) ADSCrossRefMATHMathSciNetGoogle Scholar
  8. 8.
    Beneduci, R.: J. Math. Phys. 47, 062104 (2006) ADSCrossRefMathSciNetGoogle Scholar
  9. 9.
    Beneduci, R.: Int. J. Geom. Methods Mod. Phys. 3, 1559 (2006) CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Beneduci, R.: J. Math. Phys. 48, 022102 (2007) ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    Beneduci, R.: Il Nuovo Cimento B 123, 43–62 (2008) ADSMathSciNetGoogle Scholar
  12. 12.
    Beneduci, R.: Int. J. Theor. Phys. 49, 3030–3038 (2010) CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Beneduci, R.: Bull. Lond. Math. Soc. 42, 441–451 (2010) CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Beneduci, R.: Linear Algebra Appl. 433, 1224–1239 (2010) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Beneduci, R.: Int. J. Theor. Phys. 49, 3030–3038 (2010) CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Beneduci, R.: Int. J. Theor. Phys. 50, 3724–3736 (2011). doi: 10.1007/s10773-011-0907-7 CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Beneduci, R., Brooke, J., Curran, R., Schroeck, F. Jr.: Int. J. Theor. Phys. 50, 3682–3696 (2011). doi: 10.1007/s10773-011-0797-8 CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Beneduci, R., Brooke, J., Curran, R., Schroeck, F. Jr.: Int. J. Theor. Phys. 50, 3697–3723 (2011). doi: 10.1007/s10773-011-0869-9 CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Berberian, S.K.: Notes on Spectral Theory. Van Nostrand Mathematical Studies. Van Nostrand, New York (1966) MATHGoogle Scholar
  20. 20.
    Busch, P., Grabowski, M., Lahti, P.: Operational Quantum Physics. Lecture Notes in Physics, vol. 31. Springer, Berlin (1995) MATHGoogle Scholar
  21. 21.
    Davies, E.B., Lewis, J.T.: Commun. Math. Phys. 17, 239 (1970) ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Heinoinen, T., Lahti, P., Pellonpää, J.P., Pulmannová, S., Ylinen, K.: J. Math. Phys. 44, 1998–2008 (2003) ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    Holevo, A.S.: Probabilistics and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982) Google Scholar
  24. 24.
    Holevo, A.S.: Trans. Mosc. Math. Soc. 26, 133 (1972) MATHMathSciNetGoogle Scholar
  25. 25.
    Jenčová, A., Pulmannová, S.: Rep. Math. Phys. 59, 257–266 (2007) ADSCrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Jenčová, A., Pulmannová, A.: Found. Phys. 39, 613–624 (2009) ADSCrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Kraus, K.: Position observables of the photon. In: Price, W.C., Chissick, S.S. (eds.) The Uncertainty Principle and Foundations of Quantum Mechanics, pp. 293–320. Wiley, London (1977) Google Scholar
  28. 28.
    Munkres, J.R.: Topology. Prentice Hall, Upper Saddle River (2000) MATHGoogle Scholar
  29. 29.
    Naimark, M.A.: Izv. Akad. Nauk SSSR, Ser. Mat. 4, 277–318 (1940) MATHGoogle Scholar
  30. 30.
    Newton, T.D., Wigner, E.P.: Rev. Mod. Phys. 21, 400 (1949) ADSCrossRefMATHGoogle Scholar
  31. 31.
    Prugovečki, E.: Stochastic Quantum Mechanics and Quantum Spacetime. Reidel, Dordrecht (1984) CrossRefMATHGoogle Scholar
  32. 32.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics. Academic Press, New York (1980) MATHGoogle Scholar
  33. 33.
    Riesz, F., Nagy, B.S.: Functional Analysis. Dover, New York (1990) MATHGoogle Scholar
  34. 34.
    Schroeck, F.E. Jr.: Quantum Mechanics on Phase Space. Kluwer Academic Publishers, Dordrecht (1996) CrossRefMATHGoogle Scholar
  35. 35.
    Wightman, A.S.: Rev. Mod. Phys. 34, 845–872 (1962) ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CalabriaCalabriaItaly
  2. 2.INFN Gruppo Collegato CosenzaArcavacata di RendeItaly

Personalised recommendations