Skip to main content
Log in

Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

Glass spheres are often used as filler materials for composites. Comparatively few articles in the literature have been devoted to the measurement or modelling of thermal properties of composites containing glass spheres, and there does not appear to be any reported data on the measurement of thermal diffusivities over a range of filler volume fractions. In this study, the thermal diffusivities of guar-gel/glass sphere composites were measured using a transient comparative method. The addition of the glass beads to the gel increased the thermal diffusivity of the composite, more than doubling the thermal diffusivity of the composite relative to the diffusivity of the gel at the maximum glass volume fraction of approximately 0.57. Thermal conductivities of the composites were derived from the thermal diffusivity measurements, measured densities and estimated specific heat capacities of the composites. Two approaches to modelling the effective thermal diffusivity were considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

A :

Parameter defined by Eq. 14

B :

Parameter defined by Eq. 15

Bi :

Biot number defined by Eq. 5

c P :

Specific heat capacity (J·kg−1·K−1)

F :

Intercept of linear portion of temperature history

h :

Heat transfer coefficient (W·m−2·K−1)

k :

Thermal conductivity (W·m−1·K−1)

R :

Radius (m)

s :

Slope of linear portion of temperature history (s−1)

t :

Time (s)

T :

Temperature (°C)

v :

Volume fraction

x :

Mass fraction

α :

Thermal diffusivity (m2·s−1)

θ :

Dimensionless temperature change

λ :

Roots of Eq. 4

ψ :

Parameter defined by Eq. 14

∞:

Bulk condition

c :

Referring to reference sample

e :

Referring to test sample or effective property

gel:

Referring to the guar gel

glass:

Referring to the glass spheres

i :

Initial value

max :

Maximum value

References

  1. D.M. Bigg, Polym. Compos. 7, 125 (1986)

    Article  Google Scholar 

  2. Y. Agari, T. Uno, J. Appl. Polym. Sci. 32, 5705 (1986)

    Article  Google Scholar 

  3. I.H. Tavman, J. Appl. Polym. Sci. 62, 2161 (1996)

    Article  Google Scholar 

  4. M. Rusu, N.M. Sofian, C. Ibanescu, D. Rusu, Polym. Polym. Compos. 8, 427 (2000)

    Google Scholar 

  5. N.M. Sofian, M. Rusu, R. Neagu, E. Neagu, J. Thermoplast. Compos. Mater. 14, 20 (2001)

    Article  Google Scholar 

  6. Y.P. Mamunya, V.V. Davydenko, P. Pissis, E.V. Lebedev, Eur. Polym. J. 38, 1887 (2002)

    Article  Google Scholar 

  7. D. Kumlutas, I.H. Tavman, J. Thermoplast. Compos. Mater. 19, 441 (2006)

    Article  Google Scholar 

  8. N.L.B. Hussain, H. Ismail, D.M. Mariatti, J. Thermoplast. Compos. Mater. 19, 413 (2006)

    Article  Google Scholar 

  9. A.S. Luyt, J.A. Molefi, H. Krump, Polym. Degrad. Stab. 91, 1629 (2006)

    Article  Google Scholar 

  10. H.S. Tekce, D. Kumlutas, I.H. Tavman, J. Reinf. Plast. Compos. 26, 113 (2007)

    Article  ADS  Google Scholar 

  11. S.R. Annapragada, D. Sun, S.V. Garimella, Comput. Mater. Sci. 40, 255 (2007)

    Article  Google Scholar 

  12. V. Chifor, R. Orban, Z. Tekiner, M. Turker, Mater. Sci. Forum 672, 191 (2011)

    Article  Google Scholar 

  13. J.K. Carson, M. Noureldin, Int. Commun. Heat Mass Transf. 36, 458 (2009)

    Article  Google Scholar 

  14. J.K. Carson, Int. Commun. Heat Mass Transf. 38, 1024 (2011)

    Article  Google Scholar 

  15. M. Nikzad, S.H. Masood, I. Sbarski, Mater. Des. 32, 3448 (2011)

    Article  Google Scholar 

  16. J.K. Carson, M. Alsowailem, Polym. Polym. Compos. 25, 447 (2017)

    Google Scholar 

  17. D. Senior, Why use high quality glass spheres in plastics resin systems? Technical Report, Potters Industries Pty Ltd

  18. J.Z. Liang, F.H. Li, Polym. Test. 25, 527 (2006)

    Article  Google Scholar 

  19. J.Z. Liang, F.H. Li, Polym. Test. 26, 419 (2007)

    Article  Google Scholar 

  20. D. Mishra, A. Satapathy, A. Patnaik, Adv. Mater. Res. 445, 526 (2012)

    Article  Google Scholar 

  21. L. Běhálek, P. Lenfeld, J. Habr, J. Dobránsky, M. Seidl, B. Jiří, Key Eng. Mater. 669, 3 (2012)

    Article  Google Scholar 

  22. A.S. Doumbia, D. Jouannet, T.E. Falher, L. Cauret, Key Eng. Mater. 611–612, 859 (2014)

    Article  Google Scholar 

  23. A.S. Doumbia, A. Bourmaud, D. Jouannet, T. Falher, F. Orange, R. Retoux, L. Le Pluart, L. Cauret, Polym. Degrad. Stab. 114, 146 (2015)

    Article  Google Scholar 

  24. Zwart J, M.M. Yovanovich, Effective thermal diffusivity of simple packed system of spheres, in Proceedings of the ASME National Heat transfer Conference, Denver, Co, USA (1985)

  25. Y.A. Cengel, A.J. Ghajar, Heat and Mass Transfer Fundamentals and Applications, 4th edn. (McGraw-Hill, New York, 2011)

    Google Scholar 

  26. F.P. Incropera, D.P. DeWitt, T.L. Bergman, A.S. Lavine, Fundamentals of Heat Transfer, 6th edn. (Wiley, Hoboken NJ, 2006)

    Google Scholar 

  27. J.P. Holman, Heat Transfer, 7th edn. (McGraw-Hill, Singapore, 1992)

    Google Scholar 

  28. J.K. Carson, S.J. Lovatt, D.J. Tanner, A.C. Cleland, Int. J. Heat Mass Transf. 48, 2150 (2005)

    Article  Google Scholar 

  29. D.F. Jaguaribe, D.E. Beasley, Int. J. Heat Mass Transf. 17, 399 (1984)

    Article  Google Scholar 

  30. X. Zhang, H. Gu, M. Fujii, Int. J. Thermophys. 27, 569 (2006)

    Article  ADS  Google Scholar 

  31. J.K. Carson, J.F. Wang, M.F. North, D.J. Cleland, J. Food Eng. 175, 65 (2016)

    Article  Google Scholar 

  32. L.E. Nielsen, Ind. Eng. Chem. Fundam. 13, 17 (1974)

    Article  Google Scholar 

  33. L.E. Nielsen, J. Appl. Polym. Sci. 17, 3819 (1973)

    Article  Google Scholar 

  34. C. Vales-Pinzon, A. Vega-Flick, N.W. Pech-May, J.J. Alvarado-Gil, R.A. Medina-Esquivel, M.A. Zambrano-Arjona, J.A. Mendez-Gamboa, J. Appl. Phys. 120, 205109 (2016)

    Article  ADS  Google Scholar 

  35. W.P. Schimmel, J.V. Beck, A.B. Donaldson, J. Heat Transf. 99, 466 (1977)

    Article  Google Scholar 

  36. I. Ahmadi, Heat Mass Transf. 53, 277 (2017)

    Article  ADS  Google Scholar 

  37. Y. Choi, M.R. Okos, Effects of temperature and composition on the thermal properties of foods. Food Eng. Process Appl. 1, 93–101 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James K. Carson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carson, J.K. Thermal Diffusivity and Thermal Conductivity of Dispersed Glass Sphere Composites Over a Range of Volume Fractions. Int J Thermophys 39, 70 (2018). https://doi.org/10.1007/s10765-018-2392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-018-2392-1

Keywords

Navigation