Skip to main content
Log in

High-Temperature Vibrational Properties and Melting Curve of Aluminum

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The mean-field theory due to Wang and Li (Phys Rev B 63:196, 2000) to calculate the effective mean potential experienced by vibrating ions in a crystal is used to compute the ion-motional free energy. An improvement is sought by treating the parameter λ, entering an expression of the mean-field potential (MFP), as a free parameter for the case of aluminum. Although a corresponding expression for the Grüneisen parameter (γ) is significantly different then the known cases, namely, those due to (i) Slater, (ii) Dugdale and MacDonald, (iii) free volume theory, and (iv) Barton and Stacey, its value is very close to the experimental result. Significant improvement is observed for high-temperature thermodynamics of aluminum with the new choice of λ, or equivalently γ. Also, the present improved scheme is extended to measure the vibrational response of the crystal. Recently, Bhatt et al. (Philos Mag 90:1599, 2010) have demonstrated that the mean frequency (ω′) calculated by the MFP approach in conjunction with the density-dependent local pseudopotential suffices to characterize the crystal at finite temperatures. Relating ω′ to the Debye frequency, vibrational properties like the Debye temperature, the mean-square displacement, and entropy are obtained as a function of temperature. Further, a generalized melting law is derived by combining the MFP approach to Lindemann’s law, where the effect of different choices of the parameter λ is now explicitly included into the description. Results so obtained for different physical properties are analyzed and discussed in the light of recent first principles and experimental findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Grimvall, in Ab Initio Calculation of Phonon Spectra, ed. by J.T. Devreese, P.E. Van Camp (Plenum, New York, 1983)

  2. Kirkwood J.G.: J. Chem. Phys. 18, 380 (1950)

    Article  ADS  Google Scholar 

  3. Wood W.W.: J. Chem. Phys. 20, 1334 (1952)

    Article  ADS  Google Scholar 

  4. Salsburg Z.W., Wood W.W.: J. Chem. Phys. 37, 798 (1962)

    Article  ADS  Google Scholar 

  5. Vashchenko V.Y., Zubarev V.N.: Fiz. Trerd. Tela (Leningard) 3, 886 (1963)

    Google Scholar 

  6. Vashchenko V.Y., Zubarev V.N.: Sov. Phys. Solid State 5, 653 (1963)

    Google Scholar 

  7. Moruzzi V.L., Janak J.F., Schwarz K.: Phys. Rev. B 37, 790 (1988)

    Article  ADS  Google Scholar 

  8. Wasserman E., Stixrude L., Cohen R.E.: Phys. Rev. B 53, 8296 (1996)

    Article  ADS  Google Scholar 

  9. Wang Y., Li L.: Phys. Rev. B 63, 196 (2000)

    Article  ADS  Google Scholar 

  10. Wang Y., Chen D., Zhang X.: Phys. Rev. Lett. 84, 3220 (2000)

    Article  ADS  Google Scholar 

  11. Xiang S., Cai L., Jing F., Wang S.: Phys. Rev. B 70, 174102 (2004)

    Article  ADS  Google Scholar 

  12. Jiuxun S., Lingcang C., Qiang W., Fuqian J.: Phys. Rev. B 71, 024107 (2005)

    Article  ADS  Google Scholar 

  13. Song H.F., Liu H.F.: Phys. Rev. B 75, 245126 (2007)

    Article  ADS  Google Scholar 

  14. Bhattacharya C., Menon S.V.G.: J. Appl. Phys. 105, 064907 (2009)

    Article  ADS  Google Scholar 

  15. Bhatt N.K., Vyas P.R., Gohel V.B., Jani A.R.: J. Phys. Chem. Solids 66, 797 (2005)

    Article  ADS  Google Scholar 

  16. Bhatt N.K., Vyas P.R., Gohel V.B., Jani A.R.: Eur. Phys. J. B 58, 61 (2007)

    Article  ADS  Google Scholar 

  17. Bhatt N.K., Vyas P.R., Jani A.R.: Philos. Mag. 90, 1599 (2010)

    Article  Google Scholar 

  18. Wang Y., Ahuja R., Johansson B.: Phys. Rev. B 65, 014104 (2001)

    Article  ADS  Google Scholar 

  19. Y. Wang, Theoretical Studies of Thermodynamic Properties of Condensed Matter Under High Temperature and High Pressure, Ph.D. Thesis, KTH (2004), http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3718

  20. Wang Y., Liu Z.-K., Chen L.-Q., Burakovsky L., Ahuja R.: J. Appl. Phys. 100, 023533 (2006)

    Article  ADS  Google Scholar 

  21. Bhatt N.K., Vyas P.R., Jani A.R., Gohel V.B.: Indian J. Phys. 80, 707 (2006)

    Google Scholar 

  22. Fiolhais C., Perdew J.P., Armster S.Q., MacLaren J.M., Brajczewska M.: Phys. Rev. B 51, 14001 (1995)

    Article  ADS  Google Scholar 

  23. Fiolhais C., Perdew J.P., Armster S.Q., MacLaren J.M., Brajczewska M.: Phys. Rev. B 53, E 13193 (1996)

    Article  ADS  Google Scholar 

  24. Slater J.C.: Introduction to Chemical Physics. McGraw-Hill, New York (1939)

    Google Scholar 

  25. Dugdale J.S., MacDonald D.K.C.: Phys. Rev. 89, 832 (1953)

    Article  ADS  Google Scholar 

  26. Barton M.A., Stacey F.D.: Phys. Earth Planet. Int. 39, 167 (1985)

    Article  ADS  Google Scholar 

  27. Burakovsky L., Preston D.L.: J. Phys. Chem. Solids 65, 1581 (2004)

    Article  ADS  Google Scholar 

  28. Burakovsky L., Preston D.L., Wang Y.: Solid State Commun. 132, 151 (2004)

    Article  ADS  Google Scholar 

  29. Rosén J., Grimvall G.: Phys. Rev. B 27, 7199 (1983)

    Article  ADS  Google Scholar 

  30. Zoli M.: Phys. Rev. B 41, 7497 (1990)

    Article  ADS  Google Scholar 

  31. Lindemann F.A.: Phys. Z. 11, 609 (1910)

    Google Scholar 

  32. Touloukian Y.S., Kirby R.K., Taylor R.E., Desai P.D.: Thermophysical Properties of Matter. Plenum, New York (1975)

    Google Scholar 

  33. Schmidt U., Vollmer O., Kohlhaas R.: Z. Naturforsch. A: Phys. Sci. 25, 1258 (1970)

    ADS  Google Scholar 

  34. Leadbetter A.J.: J. Phys. C 1, 1489 (1968)

    Article  ADS  Google Scholar 

  35. MacDonald R.A., MacDonald W.M.: Phys. Rev. B 24, 1715 (1981)

    Article  ADS  Google Scholar 

  36. Touloukian Y.S.: Thermophysical Properties of High Temperature Solid Materials. MacMillan Pubs., New York (1967)

    Google Scholar 

  37. Hultgren R., Desai P.D., Hawkins D.T., Gleiser M., Kelley K.K., Wagman D.D.: Selected Values of Thermodynamic Properties of The Elements. American Society for Metals, Metals Park, OH (1973)

    Google Scholar 

  38. Jeong J.-W., Lee I.-H., Chang K.J.: Phys. Rev. B 59, 329 (1999)

    Article  ADS  Google Scholar 

  39. Straub G.K., Wills J.B., Sanchez-Castro C.R., Wallace D.C.: Phys. Rev. B 50, 5055 (1994)

    Article  ADS  Google Scholar 

  40. Armand G., Zeppenfeld P.: Phys. Rev. B 40, 5936 (1989)

    Article  ADS  Google Scholar 

  41. Maradudin A.A., Fein A.E.: Phys. Rev. 128, 2589 (1962)

    Article  ADS  Google Scholar 

  42. Shukla R.C., Hübschle H.: Phys. Rev. B 40, 1555 (1989)

    Article  ADS  Google Scholar 

  43. Zoli M.: Phys. Rev. B 41, 7497 (1990)

    Article  ADS  Google Scholar 

  44. Zoli M., Santoro G., Bortolani V., Maradudin A.A., Wallis R.F.: Phys. Rev. B 41, 7507 (1990)

    Article  ADS  Google Scholar 

  45. Zoli M.: Philos. Mag. Lett. 64, 285 (1991)

    Article  ADS  Google Scholar 

  46. Kagaya H.-M., Imazawa K., Sato M., Soma T.: J. Mater. Sci. 33, 2595 (1998)

    Article  ADS  Google Scholar 

  47. Chipman D.R.: J. Appl. Phys. 31, 2012 (1960)

    Article  ADS  Google Scholar 

  48. Owen E.A., Williams R.W.: Proc. R. Soc. London, Ser. A 188, 509 (1947)

    Article  ADS  Google Scholar 

  49. McDonald D.L.: Acta Crystallogr. 23, 185 (1967)

    Article  Google Scholar 

  50. Alfě D., Vočadlo L., Price G.D., Gillan M.J.: J. Phys.: Condens. Matter 16, S973 (2004)

    Article  ADS  Google Scholar 

  51. Chisolm E.D., Crockett S.D., Wallace D.C.: Phys. Rev. B 68, 104103 (2003)

    Article  ADS  Google Scholar 

  52. Boehler R., Ross M.: Earth Planet. Sci. Lett. 153, 223 (1997)

    Article  ADS  Google Scholar 

  53. Hänström A., Lazor P.: J. Alloys Compd. 305, 209 (2000)

    Article  Google Scholar 

  54. J.W Shaner, J.M. Brown, R.G. McQueen, in High Pressure in Science and Technology, ed. by C. Homan, R.K. MacCrone, E. Whalley (North Holland, Amsterdam, 1984), p. 134

  55. Moriarty J.A.: Phys. Rev. B 49, 12431 (1994)

    Article  ADS  Google Scholar 

  56. Leadbetter A.A.J.: J. Phys. C 1, 1489 (1968)

    Article  ADS  Google Scholar 

  57. Grabowski B., Ismer L., Hickel T., Neugebauer J.: Phys. Rev. B 79, 134106 (2009)

    Article  ADS  Google Scholar 

  58. Hirschfelder J.O., Curtiss C., Bird R.B.: Molecular Theory of Gases and Liquids, pp. 1042. Wiley, New York (1954)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Bhatt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhatt, N.K., Thakore, B.Y., Vyas, P.R. et al. High-Temperature Vibrational Properties and Melting Curve of Aluminum. Int J Thermophys 31, 2159–2175 (2010). https://doi.org/10.1007/s10765-010-0890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10765-010-0890-x

Keywords

Navigation