Skip to main content
Log in

Quantum Electric Dipole Lattice

Water Molecules Confined to Nanocavities in Beryl

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

A Correction to this article was published on 03 October 2018

This article has been updated

Abstract

Water is subject to intense investigations due to its importance in biological matter but keeps many of its secrets. Here, we unveil an even other aspect by confining H2O molecules to nanosize cages. Our THz and infrared spectra of water in the gemstone beryl evidence quantum tunneling of H2O molecules in the crystal lattice. The water molecules are spread out when confined in a nanocage. In combination with low-frequency dielectric measurements, we were also able to show that dipolar coupling among the H2O molecules leads towards a ferroelectric state at low temperatures. Upon cooling, a ferroelectric soft mode shifts through the THz range. Only quantum fluctuations prevent perfect macroscopic order to be fully achieved. Beside the significance to life science and possible application, nanoconfined water may become the prime example of a quantum electric dipolar lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Change history

  • 03 October 2018

    The original version of this article unfortunately contained mistakes in the affiliations of the first author. Martin Dressel is also affiliated with the Moscow Institute of Physics and Technology.

References

  1. C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013).

  2. L. Savary and L. Balents, Rep. Prog. Phys. 80, 16502 (2017).

  3. Y. Zhou, K. Kanoda, and T.-K. Ng, Rev. Mod. Phys. 89, 025003 (2017).

  4. L. Pauling, J. Am. Chem. Soc. 57, 2680 (1935).

  5. P.W. Anderson, Phys. Rev. 102, 1008 (1956); Mater. Res.Bull. 8, 153 (1973).

  6. P.I. Belobrov, R.S. Gekht, and V.A. Ignatchenko, Sov. Phys. JETP 57, 636 (1983).

  7. D.C. Johnston, Phys. Rev. B 93, 014421 (2016).

  8. A. Griesmaier, J. Werner, S. Hensler, J. Stuhler, and T. Pfau, Phys. Rev. Lett. 94, 160401 (2005).

  9. J. Stuhler, A. Griesmaier, T. Koch, M. Fattori, S. Giovanazzi, P. Pedri, L. Santos, and T. Pfau, Phys. Rev. Lett. 95, 150406 (2005).

  10. M.A. Boranov, M. Dalmonte, G. Pupillo, and P. Zoller, Chem. Rev. 112, 5012 (2012).

  11. S.-P. Shen, J.-C. Wu, J.-D. Song, X.-F. Sun, Y.-F. Yang, Y.-S. Chai, D.-S. Shang, S.-G. Wang, J.F. Scott, and Y. Sun, Nature Commun. 7, 10569 (2016).

  12. B.E. Vugmeister and M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990).

  13. K.A. Müller and H. Burkhard, Phys. Rev. B 19, 3593 (1979).

  14. K. A. Müller, W. Berlinger, and E. Tosatti, Z. Phys. B 48, 277 (1991).

  15. J. Hemberger, M. Nicklas, R. Viana, P. Lunkenheimer, A. Loidl and R.Böhmer, J.Phys. Condens. Matter 8, 4673 (1996).

  16. S.E. Rowley, L.J. Spalek, R.P Smith, M.P.M. Dean, M. Itoh, J.F. Scott, G.G. Lonzarich and S.S. Saxena, Nature Phys. 10, 367 (2014).

  17. K. Kuratobi and Y. Murata, Science 333, 613 (2011).

  18. C. Beduza, M. Carravettab, J. Y.-C. Chenc, M. Concistrèb, M. Denningb, M. Frunzic, A. J. Horsewilld, O. G. Johannessenb, R. Lawlere, X. Leic, M. H. Levittb, Y. Lic, S. Mamoneb, Y. Murataf, U. Nagelg, T. Nishidaf, J. Ollivierh, S. Rolsh, T. Rõõm, R. Sarkarb, N. J. Turroc, and Y. Yanga, Proc. Nat. Acad. Sci. (New York) 109, 12894 (2012).

  19. A. I. Kolesnikov, J.-M. Zanotti, C.-K. Loong, P. Thiyagarajan, A. P. Moravsky, R. O. Loutfy, and C. J. Burnham, Phys. Rev. Lett. 93, 035503 (2004).

  20. F. G. Alabarse, J. Haines, O. Cambon, C. Levelut, D. Bourgogne, A. Haidoux, D. Granier, and B. Coasne, Phys. Rev. Lett. 109, 035701 (2012).

  21. B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys. Chem. Lett. 4, 2015 (2013).

  22. E.S. Zhukova, B.P. Gorshunov, V.I. Torgashev, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, and M. Dressel, J. Phys.: Conf. Series 486, 012019 (2014).

  23. E.S. Zhukova, V.I. Torgashev, B.P. Gorshunov, V.V. Lebedev, G.S. Shakurov, R.K. Kremer, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, A.S. Prokhorov and M. Dressel, J. Chem. Phys. 140, 224317 (2014).

  24. B.P. Gorshunov, E.S. Zhukova, V.I. Torgashev, V.V. Lebedev, A.S. Prokhorov, G.S. Shakurov, R.K. Kremer, V.V. Uskov, E.V. Pestrjakov, V.G. Thomas, D.A. Fursenko, C. Kadlec, F. Kadlec, and M. Dressel, Phase Transitions 87, 966 (2014).

  25. A.I. Kolesnikov, G.F. Reiter, N. Choudhury, T.R. Prisk, E. Mamontov, A. Podlesnyak, G. Ehlers, A.G. Seel, D.J. Wesolowski, and L.M. Anovitz, Phys. Rev. Lett. 116, 167802 (2016).

  26. Y. Finkelstein, R. Moreh, S.L. Shang, Y. Wang, and Z.K. Liu, J. Chem. Phys. 146, 124307 (2017).

  27. M.A. Belyanchikov, E.S. Zhukova, S. Tretiak, A. Zhugayevych, M. Dressel, F. Uhlig, J. Smiatek, M. Fyta, V.G. Thomas, and B.P. Gorshunov. Phys. Chem. Chem. Phys. 19, 30740 (2017). https://doi.org/10.1039/C7CP06472A.

  28. B.P. Gorshunov, V.I. Torgashev, E.S. Zhukova, V.G. Thomas, M.A. Belyanchikov, C. Kadlec, F. Kadlec, M. Savinov, T. Ostapchuk, J. Petzelt, J. Prokleska, P.V. Tomas, D.A. Fursenko, G.S. Shakurov, A.S. Prokhorov, V.S. Gorelik, L.S. Kadyrov, V.V. Uskov, R. Kremer, and M. Dressel, Nature Commun. 7, 12842 (2016).

  29. A.S. Lebedev, A.G. Il’in, and V.A. Klyakhin, “Hydrothermally grown beryls of gem quality. // Morphology and Phase Equilibria of Minerals”, in: Proceedings of the 13th General Meeting of the International Mineralogical Association, Varna (Sofia, Bulgaria,1982), 1986, Vol. 2, pp. 403–411.

  30. V. V. Bakakin and N. V. Belov, Geochemistry 5, 484 (1962).

  31. R.I. Mashkovtsev, V.G. Thomas, D.A. Fursenko E.S. Zhukova, V.V. Uskov, and B.P. Gorshunov, Am. Mineralogist. 101, 175 (2016).

  32. G. Kozlov and A. Volkov, in: Millimeter and Submillimeter Spectroscopy of Solids, ed. by G. Grüner (Springer-Verlag, Berlin, 1998); p. 51.

  33. B. Gorshunov, A. Volkov, I. Spektor, A. Prokhorov, A. Mukhin, M. Dressel, S. Uchida, and A. Loidl, Int. J. Infrared Millimeter Waves 26, 1217 (2005).

  34. B. A. Kolesov and C. A. Geiger, Phys. Chem. Minerals 27, 557 (2000).

  35. B. A. Kolesov, J. Struct. Chem. 47, 21 (2006).

  36. M. Born and E. Wolf, Principles of Optics, 7th edition (Cambridge University Press, Cambridge, 1999).

  37. M. Dressel and G. Grüner, Electrodynamics of Solids (Cambridge University Press, Cambridge, 2002).

  38. A. S. Barker and J. J. Hopfield, Phys. Rev. 135, A1732 (1964).

  39. T. Pilati, F. Demartin, and C. M. Gramaccioli, Am. Mineralogist 82, 1054 (1997).

  40. C. C. Kim, M. I. Bell, and D. A. McKeown, Physica B 205, 193 (1995).

  41. F. Gervais, B. Piriou, and F. Cabannes, Phys. Stat. Sol. (b) 51, 701 (1972).

  42. H. D. Downing and D. Williams, J. Geophys. Res. 80, 1656 (1975).

  43. H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995).

  44. H. J. Liebe, G. A. Hufford, and T. Manabe, Int. J. Infrared Milli. Waves 12, 659 (1991).

  45. J. E. Bertie, H. J. Labbe, and E. Whalley. J. Chem. Phys. 50 4501 (1969).

  46. M. A. Lines and A. M. Glass, Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977).

  47. U. Kaatze, Physik Journal 15 (12), 19 (December 2016).

  48. L.V. Belobrov, V.A. Voevodin, and V.A. Ignatchenko, Sov. Phys. JETP 61, 522 (1985).

Download references

Acknowledgements

We would like to thank all our collaborator who participated to the project over the years, and colleagues we had intense discussion with M.A. Belyanchikov, H.-P. Büchler, D.A. Fursenko, M. Fyta, V.S. Gorelik, U. Kaatze, C. Kadlec, F. Kadlec, L.S. Kadyrov, R.K. Kremer, V.V. Lebedev, T. Ostapchuk, E.V. Pestrjakov, J. Petzelt, A.S. Prokhorov, J. Prokleska, M. Savinov, G.S. Shakurov, J. Smiatek, P.V. Tomas, V.I. Torgashev, S. Tretiak, F. Uhlig, V.V. Uskov, and A. Zhugayevych.

Funding

The work was supported by the Russian Ministry of Education and Science (Program 5top100), MIPT grant for visiting professors and Project N3.9896.2017/BY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Dressel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dressel, M., Zhukova, E.S., Thomas, V.G. et al. Quantum Electric Dipole Lattice. J Infrared Milli Terahz Waves 39, 799–815 (2018). https://doi.org/10.1007/s10762-018-0472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-018-0472-8

Keywords

Navigation