Skip to main content
Log in

Enhancement of Real-Time THz Imaging System Based on 320 × 240 Uncooled Microbolometer Detector

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

A real-time terahertz (THz) imaging system was demonstrated based on a 320 × 240 uncooled microbolometer detector combined with a 2.52 THz far-infrared CO2 laser. On the top of micro-bridge structure (35 × 35 μm2), a 10 nm nickel-chromium (NiCr) thin film was deposited to enhance THz absorption, which was fabricated by a combined process of magnetron sputtering and reactive ion etching (RIE). By mechanical simulation using design of experiment (DOE) method, the minimum deformation was optimized to 0.0385 μm, and a measured deformation of 0.097 μm was achieved in the fabrication. The fabricated micro-bridge pixel was used for THz detection, and a responsivity of 1235 V/W was achieved with a noise equivalent power (NEP) of 87.4 pW/Hz1/2. THz imaging of metal gasket covered by label paper, paper clip in an envelope, and watermark of a banknote was demonstrated by a combination of histogram equalization (HE) and linear enhancement algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. D. Dragoman and M. Dragoman, Terahertz fields and applications, Progress in quantum electronics, Vol. 28, pp. 1–66, (2004).

    Article  MATH  Google Scholar 

  2. C. Jansen, S. Wietzke, O. Peters, C. Jördens, T. Hochrein and M. Koch, Terahertz imaging: applications and perspectives, Applied Optics, Vol. 49, pp. E48-E57, (2010).

    Article  Google Scholar 

  3. M. Kowalski, M. Kastek, M. Walczakowski, N. Palka and M. Szustakowski, Passive imaging of concealed objects in terahertz and long-wavelength infrared, Applied Optics, Vol. 54, pp. 3826-3833, (2015).

    Article  Google Scholar 

  4. Y. Morita, A. Dobroiu, C. Otani And K. Kawase, Real-time terahertz diagnostics for detecting microleak defects in the seals of flexible plastic packaging, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 1, pp. 338-345, (2007).

    Google Scholar 

  5. K. Kawase, Y. Ogawa and Y. Watanabe, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Optics Express, Vol. 11, pp. 2549-2554, (2003).

    Article  Google Scholar 

  6. H. Budzier and G. Gerlach, Thermal infrared sensors: Theory, Optimization and Practice, Wiley, West Sussex, pp.226, (2011).

  7. A. W. M. Lee, Student Member, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Real-time imaging using a 4.3-THz quantum cascade laser and a 320-240 microbolometer focal-plane array, IEEE Photonics Technology Letters, Vol. 18, pp: 1415-1417, (2006).

    Article  Google Scholar 

  8. M. J. Coppinger, N. A. Sustersic, J. Kolodzey and T. H. Allik, Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging, Optical Engineering, Vol. 50, pp. 053206-1-053206-5, (2011).

    Article  Google Scholar 

  9. D. X. Zhou, E. P. J. Parrott, D. J. Paul and J. A. Zeitler, Determination of complex refractive index of thin metal films from terahertz time-domain spectroscopy, Journal of Applied Physics, Vol.104, pp. 053110-1-053110-9, (2008).

  10. M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev and V. V. Gerasimov, Application of Uncooled Microbolometer Detector Arrays for Recording Radiation of the Terahertz Spectral Range, Optoelectronics, Instrumentation and Data Processing, Vol. 47, pp. 508-512, (2011).

    Article  Google Scholar 

  11. B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application, Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, pp:1207-1222, (2011).

  12. A. W. M. Lee and Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array, Optics Letters, Vol.30, pp: 2563-2565, (2005).

  13. Z. Y. Tan, L. Gu, T. H. Xu, T. Zhou and J. C. Cao, Real-time reflection imaging with terahertz camera and quantum-cascade laser, Chinese Optics Letters, Vol. 12, pp: 070401-1-070401-3, (2014).

    Google Scholar 

  14. J. Oden, J. Meilhan, J. L. Dera, J. F. Roux, F. Garet, J. L.Coutaz and F. Simoens, Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature, Optics Express, Vol. 21, pp. 4817-4825, (2013).

  15. Z. Sun, W. Feng, Q. Zhao and L. Huang, Brightness preserving image enhancement based on a gradient and intensity histogram, Journal of Electronic Imaging, Vol. 24, pp. 053006-1-053006-11, (2015).

    Google Scholar 

  16. C. C. Ting, B. F. Wu, M. L. Chung, C. C. Chiu and Y. C. Wu, Visual Contrast Enhancement Algorithm Based on Histogram Equalization, Sensors, Vol. 15, pp. 16981-16999, (2015).

    Article  Google Scholar 

  17. D. Prasanna.R, N. P, S. S and N. Raju, Enhancement of vein patterns in hand image for biometric and biomedical application using various image enhancement techniques, Procedia Engineering, Vol. 38, pp. 1174-1185, (2012).

  18. C. Ke, W. Liu and J. J. Talghader. Curvature compensation in micromirrors with high reflectivity optical coatings, Microelectro Mechanical Systems, Vol.10, pp: 409-417, (2011).

  19. L. Franek and X. Y. Jiang, Orthogonal design of experiments for parameter learning, Signal Processing, Vol.93, pp: 1694-1704, (2013).

  20. M. Elbner, Vacuum quality evaluation for uncooled micro bolometer thermal, Microelectronics Reliability, Vol. 54, pp. 1758-1763, (2014).

    Article  Google Scholar 

  21. N. Oda, I. Hosako, T. Ishi, H. Minamide, C. Otani, N. Sekine, The Need of Terahertz Cameras for Standardizing Sensitivity Measurements, Journal of Infrared, Millimeter, and Terahertz Waves, Vol.35, pp: 671-685, (2014).

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by National Science Funds for Creative Research Groups of China (No. 61421002), the National Natural Science Foundation of China (No. 61235006, 61501092), the Fundamental Research Funds for the Central Universities (No. ZYGX2015KYQD016).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xing Zheng or Zhiming Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, X., Wu, Z., Gou, J. et al. Enhancement of Real-Time THz Imaging System Based on 320 × 240 Uncooled Microbolometer Detector. J Infrared Milli Terahz Waves 37, 965–976 (2016). https://doi.org/10.1007/s10762-016-0287-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0287-4

Keywords

Navigation