Advertisement

Enhancement of Real-Time THz Imaging System Based on 320 × 240 Uncooled Microbolometer Detector

  • Xing Zheng
  • Zhiming Wu
  • Jun Gou
  • Ziji Liu
  • Jun Wang
  • Jie Zheng
  • Zhenfei Luo
  • Weiqing Chen
  • Longcheng Que
  • Yadong Jiang
Article

Abstract

A real-time terahertz (THz) imaging system was demonstrated based on a 320 × 240 uncooled microbolometer detector combined with a 2.52 THz far-infrared CO2 laser. On the top of micro-bridge structure (35 × 35 μm2), a 10 nm nickel-chromium (NiCr) thin film was deposited to enhance THz absorption, which was fabricated by a combined process of magnetron sputtering and reactive ion etching (RIE). By mechanical simulation using design of experiment (DOE) method, the minimum deformation was optimized to 0.0385 μm, and a measured deformation of 0.097 μm was achieved in the fabrication. The fabricated micro-bridge pixel was used for THz detection, and a responsivity of 1235 V/W was achieved with a noise equivalent power (NEP) of 87.4 pW/Hz1/2. THz imaging of metal gasket covered by label paper, paper clip in an envelope, and watermark of a banknote was demonstrated by a combination of histogram equalization (HE) and linear enhancement algorithm.

Keywords

THz imaging Image enhancement THz detector NiCr film RIE Mechanical simulation 

Notes

Acknowledgment

This work was partially supported by National Science Funds for Creative Research Groups of China (No. 61421002), the National Natural Science Foundation of China (No. 61235006, 61501092), the Fundamental Research Funds for the Central Universities (No. ZYGX2015KYQD016).

References

  1. 1.
    D. Dragoman and M. Dragoman, Terahertz fields and applications, Progress in quantum electronics, Vol. 28, pp. 1–66, (2004).CrossRefMATHGoogle Scholar
  2. 2.
    C. Jansen, S. Wietzke, O. Peters, C. Jördens, T. Hochrein and M. Koch, Terahertz imaging: applications and perspectives, Applied Optics, Vol. 49, pp. E48-E57, (2010).CrossRefGoogle Scholar
  3. 3.
    M. Kowalski, M. Kastek, M. Walczakowski, N. Palka and M. Szustakowski, Passive imaging of concealed objects in terahertz and long-wavelength infrared, Applied Optics, Vol. 54, pp. 3826-3833, (2015).CrossRefGoogle Scholar
  4. 4.
    Y. Morita, A. Dobroiu, C. Otani And K. Kawase, Real-time terahertz diagnostics for detecting microleak defects in the seals of flexible plastic packaging, Journal of Advanced Mechanical Design, Systems, and Manufacturing, Vol. 1, pp. 338-345, (2007).Google Scholar
  5. 5.
    K. Kawase, Y. Ogawa and Y. Watanabe, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Optics Express, Vol. 11, pp. 2549-2554, (2003).CrossRefGoogle Scholar
  6. 6.
    H. Budzier and G. Gerlach, Thermal infrared sensors: Theory, Optimization and Practice, Wiley, West Sussex, pp.226, (2011).Google Scholar
  7. 7.
    A. W. M. Lee, Student Member, B. S. Williams, S. Kumar, Q. Hu, and J. L. Reno, Real-time imaging using a 4.3-THz quantum cascade laser and a 320-240 microbolometer focal-plane array, IEEE Photonics Technology Letters, Vol. 18, pp: 1415-1417, (2006).CrossRefGoogle Scholar
  8. 8.
    M. J. Coppinger, N. A. Sustersic, J. Kolodzey and T. H. Allik, Sensitivity of a vanadium oxide uncooled microbolometer array for terahertz imaging, Optical Engineering, Vol. 50, pp. 053206-1-053206-5, (2011).CrossRefGoogle Scholar
  9. 9.
    D. X. Zhou, E. P. J. Parrott, D. J. Paul and J. A. Zeitler, Determination of complex refractive index of thin metal films from terahertz time-domain spectroscopy, Journal of Applied Physics, Vol.104, pp. 053110-1-053110-9, (2008).Google Scholar
  10. 10.
    M. A. Dem’yanenko, D. G. Esaev, I. V. Marchishin, V. N. Ovsyuk, B. I. Fomin, B. A. Knyazev and V. V. Gerasimov, Application of Uncooled Microbolometer Detector Arrays for Recording Radiation of the Terahertz Spectral Range, Optoelectronics, Instrumentation and Data Processing, Vol. 47, pp. 508-512, (2011).CrossRefGoogle Scholar
  11. 11.
    B. A. Knyazev, V. S. Cherkassky, Y. Y. Choporova, V. V. Gerasimov, M. G. Vlasenko, M. A. Dem’yanenko, D. G. Esaev, Real-Time Imaging Using a High-Power Monochromatic Terahertz Source: Comparative Description of Imaging Techniques with Examples of Application, Journal of Infrared, Millimeter, and Terahertz Waves, Vol. 32, pp:1207-1222, (2011).Google Scholar
  12. 12.
    A. W. M. Lee and Q. Hu, Real-time, continuous-wave terahertz imaging by use of a microbolometer focal-plane array, Optics Letters, Vol.30, pp: 2563-2565, (2005).Google Scholar
  13. 13.
    Z. Y. Tan, L. Gu, T. H. Xu, T. Zhou and J. C. Cao, Real-time reflection imaging with terahertz camera and quantum-cascade laser, Chinese Optics Letters, Vol. 12, pp: 070401-1-070401-3, (2014).Google Scholar
  14. 14.
    J. Oden, J. Meilhan, J. L. Dera, J. F. Roux, F. Garet, J. L.Coutaz and F. Simoens, Imaging of broadband terahertz beams using an array of antenna-coupled microbolometers operating at room temperature, Optics Express, Vol. 21, pp. 4817-4825, (2013).Google Scholar
  15. 15.
    Z. Sun, W. Feng, Q. Zhao and L. Huang, Brightness preserving image enhancement based on a gradient and intensity histogram, Journal of Electronic Imaging, Vol. 24, pp. 053006-1-053006-11, (2015).Google Scholar
  16. 16.
    C. C. Ting, B. F. Wu, M. L. Chung, C. C. Chiu and Y. C. Wu, Visual Contrast Enhancement Algorithm Based on Histogram Equalization, Sensors, Vol. 15, pp. 16981-16999, (2015).CrossRefGoogle Scholar
  17. 17.
    D. Prasanna.R, N. P, S. S and N. Raju, Enhancement of vein patterns in hand image for biometric and biomedical application using various image enhancement techniques, Procedia Engineering, Vol. 38, pp. 1174-1185, (2012).Google Scholar
  18. 18.
    C. Ke, W. Liu and J. J. Talghader. Curvature compensation in micromirrors with high reflectivity optical coatings, Microelectro Mechanical Systems, Vol.10, pp: 409-417, (2011).Google Scholar
  19. 19.
    L. Franek and X. Y. Jiang, Orthogonal design of experiments for parameter learning, Signal Processing, Vol.93, pp: 1694-1704, (2013).Google Scholar
  20. 20.
    M. Elbner, Vacuum quality evaluation for uncooled micro bolometer thermal, Microelectronics Reliability, Vol. 54, pp. 1758-1763, (2014).CrossRefGoogle Scholar
  21. 21.
    N. Oda, I. Hosako, T. Ishi, H. Minamide, C. Otani, N. Sekine, The Need of Terahertz Cameras for Standardizing Sensitivity Measurements, Journal of Infrared, Millimeter, and Terahertz Waves, Vol.35, pp: 671-685, (2014).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Xing Zheng
    • 1
  • Zhiming Wu
    • 1
  • Jun Gou
    • 1
  • Ziji Liu
    • 1
  • Jun Wang
    • 1
  • Jie Zheng
    • 1
  • Zhenfei Luo
    • 2
  • Weiqing Chen
    • 1
  • Longcheng Que
    • 1
  • Yadong Jiang
    • 1
  1. 1.University of Electronic Science and Technology of ChinaChengduChina
  2. 2.Research Center of Laser FusionChina Academy of Engineering PhysicsChengduChina

Personalised recommendations