Skip to main content
Log in

Characterization of ErAs:GaAs and LuAs:GaAs Superlattice Structures for Continuous-Wave Terahertz Wave Generation through Plasmonic Photomixing

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We investigate the impact of ErAs:GaAs and LuAs:GaAs superlattice structures with different LuAs/ErAs nanoparticle depositions and superlattice geometries on terahertz radiation properties of plasmonic photomixers operating at a 780-nm optical wavelength. Our analysis indicates the crucial impact of carrier drift velocity and carrier lifetime on the performance of plasmonic photomixers. While higher carrier drift velocities enable higher optical-to-terahertz conversion efficiencies by offering higher quantum efficiencies, shorter carrier lifetimes allow achieving higher optical-to-terahertz conversion efficiencies by mitigating the negative impact of destructive terahertz radiation from slow photocarriers and preventing the carrier screening effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Preu, G. H. Dohler, S. Malzer, L. J. Wang, and A. C. Gossard, J. Appl. Phys. 109, 061301 (2011).

    Article  Google Scholar 

  2. E. R. Brown, Int. J. High Speed Electron. Syst. 13, 497 (2003).

    Article  Google Scholar 

  3. J. Bjarnason, J. Chan, A. W. M. Lee, E. R. Brown, D. C. Driscoll, M. Hanson, A. C. Gossard, and R. E. Muller, Appl. Phys. Lett. 85, 3983–3985 (2004).

    Article  Google Scholar 

  4. E. Peytavit, S. Lepilliet, F. Hindle, C. Coinon, T. Akalin, G. Ducournau, G. Mouret, and J.-F. Lampin, Appl. Phys. Lett. 99, 223508 (2011).

    Article  Google Scholar 

  5. E. Peytavit, C. Coinon, and J.-F. Lampin, J. Appl. Phys. 109, 016101 (2011).

    Article  Google Scholar 

  6. J. Mangeney, A. Merigault, N. Zerounian, P. Crozat, K. Blary, and J. F. Lampin, Appl. Phys. Lett. 91, 241102 (2007).

    Article  Google Scholar 

  7. H. Ito, T. Yoshimatsu, H. Yamamoto, and T. Ishibashi, Appl. Phys. Express 6, 064101 (2013)

    Article  Google Scholar 

  8. H. Ito, F. Nakajima, T. Furuta, K. Yoshino, Y. Hirota and T. Ishibashi, Electron. Lett. 39, 1828 (2003)

    Article  Google Scholar 

  9. F. Nakajima, T. Furuta, and H. Ito, Electron. Lett. 40, 1297–1299 (2004)

    Article  Google Scholar 

  10. C. W. Berry, M. R. Hashemi, S. Preu, H. Lu, A. C. Gossard, M. Jarrahi, Appl. Phys. Lett. 105, 011121 (2014).

    Article  Google Scholar 

  11. S.-H. Yang, M. Jarrahi, Appl. Phys. Lett. 107, 131111 (2015)

    Article  Google Scholar 

  12. G. C. Loata, M. D. Thomson, T. Löffler, H. G. Roskos, Appl. Phys. Lett. 91, 232506 (2007).

    Article  Google Scholar 

  13. M. Griebel, J. H. Smet, D. C. Driscoll, J. Kuhl, C. A. Diez, N. Freytag, C. Kadow, A. C. Gossard, K. von Klitzing, Nature Mater. 2, 122-126 (2003).

    Article  Google Scholar 

  14. R. P. Prasankumar, A. Scopatz, D. J. Hilton, A. J. Taylor, R. D. Averitt, J. M. Zide, A. C. Gossard, “Appl. Phys. Lett. 86, 201107 (2005).

    Article  Google Scholar 

  15. E. M. Krivoy, H. P. Nair, A. M. Crook, S. Rahimi, S. J. Maddox, R. Salas, D. A. Ferrer, V. D. Dasika, D. Akinwande, S. R. Bank, Appl. Phys. Lett. 101, 141910 (2012).

    Article  Google Scholar 

  16. C. Kadow, S. B. Fleischer, J. P. Ibbetson, J. E. Bowers, A. C. Gossard, J. W. Dong, C. J. Palmstrom, Appl. Phys. Lett. 75, 3548-3550 (1999).

    Article  Google Scholar 

  17. S.-G. Park, K. H. Jin, M. Yi, J. C. Ye, J. Ahn, and K.-H. Jeong, ACS Nano 6, 2026 (2012).

    Article  Google Scholar 

  18. S. Liu, X. Shou, and A. Nahata, IEEE Trans. Terahertz Sci. Technol. 1, 412 (2011).

    Article  Google Scholar 

  19. S.-G. Park, Y. Choi, Y.-J. Oh, and K.-H. Jeong, Opt. Express 20, 25530 (2012).

    Article  Google Scholar 

  20. M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 5, 391-397 (2015).

    Article  Google Scholar 

  21. N. T. Yardimci, S.-H. Yang, C. W. Berry, M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 5, 223-229 (2015).

    Article  Google Scholar 

  22. S.-H. Yang, M. R. Hashemi, C. W. Berry, M. Jarrahi, IEEE Trans. Terahertz Sci. Technol. 4, 575-581 (2014).

    Article  Google Scholar 

  23. C. W. Berry, N. Wang, M. R. Hashemi, M. Unlu, M. Jarrahi, Nature Communications 4, 1622 (2013).

    Article  Google Scholar 

  24. C. W. Berry and M. Jarrahi, New J. Phys. 14, 105029 (2012).

    Article  Google Scholar 

  25. C. W. Berry, M. R. Hashemi, M. Jarrahi, Appl. Phys. Lett. 104, 081122 (2014).

    Article  Google Scholar 

  26. Y. Huo, G. W. Taylor, and R. Bansal, J. Infrared, Millimeter, Terahertz Waves 23, 819–839 (2002).

    Article  Google Scholar 

  27. E. R. Brown, A. W. M. Lee, B. S. Navi, and J. E. Bjarnason, Microwave Opt. Technol. Lett. 48, 524–529 (2006).

    Article  Google Scholar 

  28. C. W. Berry, M. Jarrahi, J. Infrared, Millimeter and Terahertz Waves 33, 1182-1189 (2012).

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support from Presidential Early Career Award for Scientists and Engineers (# N00014-14-1-0573 and # W911NF-09-1-0434), NSF CAREER Award (# N00014-11-1-0096), and ONR Young Investigator Award (# N00014-12-1-0947).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Jarrahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, SH., Salas, R., Krivoy, E.M. et al. Characterization of ErAs:GaAs and LuAs:GaAs Superlattice Structures for Continuous-Wave Terahertz Wave Generation through Plasmonic Photomixing. J Infrared Milli Terahz Waves 37, 640–648 (2016). https://doi.org/10.1007/s10762-016-0255-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-016-0255-z

Keywords

Navigation