THz-Spectroscopy on High Density Polyethylene with Different Crystallinity



The different crystallinity states of high density polyethylene (PE-HD) are investigated using THz time-domain spectroscopy by exploiting the complex permittivity at a frequency range from 0.5 up to 3.5 THz. We found that samples with different crystallinity can be distinguished by comparing the material specific refractive index (n) or rather the linked complex part of the permittivity (∈ ′ ′). Correlating the calorimetrically determined degrees of crystallinity with the absolute values of the refractive index and the specific absorption peak at 2.18 THz, respectively, suggests in both cases a linear correlation.


THz-spectroscopy High density polyethylene Crystallinity of polymers 


  1. 1.
    B. M. Fischer, S. Wietzke, M. Reuter, O. Peters, R. Gente, C. Jansen, N. Vieweg, M. Koch, “Investigating Material Characteristics and Morphology of Polymers Using Terahertz Technologies”, IEEE Transactions in Terahertz Science and Technology, Vol. 3, Issue 3 (2013). Google Scholar
  2. 2.
    J. A. Zeitler, D. A. Newnham, P. F. Taday, T. L. Threlfall, R. W. Lancaster, R. W. Berg, C. J. Strachan, M. Pepper, K. C. Gordon, T. Rades, “Characterization of temperature-induced phase transitions in five polymorphic forms of sulfathiazole by terahertz pulsed spectroscopy and differential scanning calorimetry”, J. of Pharmaceutical Science, Vol. 95, No. 11 (2006). Google Scholar
  3. 3.
    M. Franz, B. M. Fischer, M. Walther, “Probing structure and phase-transitions in molecular crystals by terahertz time-domain spectroscopy“, J. of Molecular Structure, 1006, 34-40 (2011). CrossRefGoogle Scholar
  4. 4.
    B. Scherger, M. Scheller, C. Jansen, M. Koch, K. Wiesauer, “Terahertz lenses made by compression molding of micropowders“, Applied Optics, Vol. 50, Issue 15, 2256-2262 (2011). CrossRefGoogle Scholar
  5. 5.
    D. R. Smith, E. V. Loewenstein, “Optical constants of far infrared materials. 3: plastics”, J. of Applied Optics, Vol. 14, No. 6 (1975). Google Scholar
  6. 6.
    M. N. Afsar, “Precision Millimeter-Wave Measurements of Complex Refractive Index, Complex Dielectric Permittivity, and Loss Tangent of Common Polymers”, IEEE Transactions on Instrumentation and Measurement, Vol. IM-36, No. 2 (1987). Google Scholar
  7. 7.
    S. Krimm, C. Y. Liang, G. B. B. M. Sutherland, “Infrared spectra of High Polymers. II. Polyethylene”, J. of chemical physics, Vol. 25, No. 3 (1956). Google Scholar
  8. 8.
    H. Hiromichi, Y. Morisawa, H. Sato, A. Kamiya, I. Noda, Y. Ozaki, C. Otani, “Higher order conformation of poly(3-hydroxyalkanoates) studied by terahertz time-domain spectroscopy”, Appl. Phys. Lett. 96, 101904 (2010).CrossRefGoogle Scholar
  9. 9.
    S. Wietzke, M. Reuter, N. Nestle, E. Klimov, U. Zadok, B. M. Fischer, M. Koch, “Analyzing Morphology and Thermal History of Polybutylene Terephthalate by THz Time-domain Spectroscopy”, J. Infrared, Millimeter and Terahertz Waves, 32, 952-959, (2011). Google Scholar
  10. 10.
    H. Hoshina, S. Ischii, S. Yamamoto, Y. Morisawa, H. Sato, T. Uchiyama, Y. Ozaki, C. Otani, “Terahertz Spectroscopy in Polymer Research: Assignment of Intermolecular Vibrational Modes and Structural Characterization of Poly(3-Hydroxybutyrate)”, IEEE Transactions on Terahertz Science and Technology, Vol. 3, Issue 3 (2013). Google Scholar
  11. 11.
    C. J. Strachan, T. Rades, D. A. Newnham, K. C. Gordon, M. Pepper, P. F. Taday, “Using terahertz pulsed spectroscopy to study crystallinity of pharmaceutical materials”, Chemical Physics Letters, Vol. 390, Issue 1-3, 20-24 (2004).CrossRefGoogle Scholar
  12. 12.
    Yao-Chun Shen, “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: A review, Int. J. of Pharmaceutics, Vol. 417, 48-60 (2011).CrossRefGoogle Scholar
  13. 13.
    I. Ermolina, J. Darkwah, G. Smith, “Characterisation of Crystalline-Amorphous Blends of Sucrose with Terahertz-Pulsed Spectroscopy: the Development of a Prediction Technique for Estimating the Degree of Crystallinity with Partial Least Squares Regression”, American Association of Pharmaceitical Scientists, Vol 15, No. 2 (2014).Google Scholar
  14. 14.
    M. I. Bank, S. Krimm, “Lattice‐frequency studies of crystalline and fold structure in polyethylene”, J. of Applied Physics, 39, 4951 (1968). CrossRefGoogle Scholar
  15. 15.
    K. Yamamoto, M. Yamaguchi, M. Tani, M. Hangyo, S. Teramura, T. Isu, N. Tomita, “Degradation diagnosis of ultrahigh-molecular weight polyethylene with terahertz-time-domain-spectroscopy”, Appl. Phys. Lett. 85(22), 5194-5196 (2004). CrossRefGoogle Scholar
  16. 16.
    H. Hoshina, S. Ishii, S. Yamamoto, Y. Morisawa, H. Sato, T. Uchiyama, Y. Ozaki, C. Otani, “Terahertz Spectroscopy in Polymer Research: Assignment of Intermolecular Vibrational Modes and Structural Characterization of Poly(3-Hydroxybutyrate)”, IEEE Transactions on Terahertz Science and Technology, Vol. 3, Issue 3 (2013).Google Scholar
  17. 17.
    B. Heuwers, A. Beckel, A. Krieger, F. Katzenberg, J. C. Tiller, “Shape Memory Natural Rubber: An Exceptional Material for Strain and Energy Storage”, Macromolecular Chemistry and Physics 214, 912-923 (2013). CrossRefGoogle Scholar
  18. 18.
    T. Raidt, R. Hoeher, F. Katzenberg, J. C. Tiller, “Chemical Cross-linking of Polypropylenes Towards New Shape Memory Polymers”, Macromolecular Communications 36, 744-749 (2015). Google Scholar
  19. 19.
    A. J. Peacock, “Handbook of Polyethylene: Structures: Properties, and Applications”, Marcel Dekker, Inc. New York (2000). Google Scholar
  20. 20.
    M. Scheller, “Data extraction from terahertz time domain spectroscopy measurement”, J. Infrared, Millimeter and Terahertz Waves, 35, 638–648 (2014). CrossRefGoogle Scholar
  21. 21.
    TeraLyzer Data Extraction Suite, Lytera UG (haftungsbeschränkt),
  22. 22.
    I. Pupeza, R. Wilk, M. Koch, “Highly accurate optical material parameter determination with THz time-domain spectroscopy”, Optics Express, Vol. 15, Issue 7, 1598-1609 (2007).CrossRefGoogle Scholar
  23. 23.
    P. Jepsen, B. Fischer, “Dynamic range in terahertz time-domain transmission and reflection spectroscopy”, Optics Letters, Vol. 30, No. 1 (2005). Google Scholar
  24. 24.
    M. Scheller, C. Jansen, M. Koch, “Analyzing sub-100μm samples with transmission terahertzs time domain spectroscopy”, Optics Communication, Vol. 282, Issue 7, 1304-1306 (2009).CrossRefGoogle Scholar
  25. 25.
    W. Withayachumnankul, B. Fischer, D. Abbot, “Material thickness optimization for transmission-mode terahertz time-domain spectroscopy”, Optics Express, Vol. 16, No. 10, 7382-7396 (2008).CrossRefGoogle Scholar
  26. 26.
    M. Naftaly, R. E. Miles, “Terahertz Time-Domain spectroscopy for material characterization”, Proceedings of the IEEE, Vol. 95, No. 8 (2007). Google Scholar
  27. 27.
    G. W. Chantry, J. W. Fleming, P. M. Smith, “Far infared and millimeter-wave absorption spectra of some low-loss polymers”, Chemical Physics Letters, Vol. 10, No. 4 (1971). Google Scholar
  28. 28.
    M. N. Afsar, “Precision Dielectric Measurements of Nonpolar Polymers in the Millimeter Wavelength Range”, IEEE Transactions on Microwave Theory and Techniques, Vol. 33, Issue 12 (1985).Google Scholar
  29. 29.
    S. Hunsche, D. M. Mittleman, M. Koch, M. C. Nuss, “New Dimensions in T-Ray Imaging“, IEICE TRANSACTIONS on Electronics, Vol.E81-C, No.2, 269-276 (1998). Google Scholar
  30. 30.
    R. Hoeher, T. Raidt, M. Rose, F. Katzenberg, J.C. Tiller, “Recoverable Strain Storage Capacity of Shape Memory Polyethylene”, J. of Polymer Science Part B: Polymer Physics 51 (13) 1033-1040 (2013).CrossRefGoogle Scholar
  31. 31.
    R. Hoeher, T. Raidt, C. Krumm, M. Meuris, F. Katzenberg, J.C. Tiller, “Tunable Multiple-Shape Memory Polyethylene Blends”, Macromolecular Chemistry and Physics 214 (23), 2725-2732 (2013).CrossRefGoogle Scholar
  32. 32.
    S. Wietzke, C. Jansen, M. Reuter, T. Jung, D. Kraft, S. Chatterjee, B. M. Fischer, M. Koch, “Terahertz spectroscopy on polymers: A review of morphological studies,” J. Mol. Struct. 1006, 41–51 (2011). CrossRefGoogle Scholar
  33. 33.
    S. Wietzke, C. Jansen, M. Reuter, T. Jung, J. Hehl, D. Kraft, S. Chatterjee, A. Greiner, M. Koch, “Thermomorphological of the terahertz lattice modes in polyvinylidene fluoride ad high-density polyethylene”, Applied Physics letters 97, 022901 (2010). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stefan Sommer
    • 1
  • Thomas Raidt
    • 2
  • Bernd M. Fischer
    • 1
    • 3
  • Frank Katzenberg
    • 2
  • Jörg C. Tiller
    • 2
  • Martin Koch
    • 1
  1. 1.Department of Physics and Materials Sciences CenterPhilipps-Universität MarburgMarburgGermany
  2. 2.Biomaterials & Polymer Science Department of Biochemical & Chemical EngineeringTU DortmundDortmundGermany
  3. 3.French-German Research Institute Saint-LouisSaint-LouisFrance

Personalised recommendations