Advertisement

A W-Band MMIC Radar System for Remote Detection of Vital Signs

  • Sebastian Diebold
  • Serdal Ayhan
  • Steffen Scherr
  • Hermann Massler
  • Axel Tessmann
  • Arnulf Leuther
  • Oliver Ambacher
  • Thomas Zwick
  • Ingmar Kallfass
Article

Abstract

In medical and personal health systems for vital sign monitoring, contact-free remote detection is favourable compared to wired solutions. For example, they help to avoid severe pain, which is involved when a patient with burned skin has to be examined. Continuous wave (CW) radar systems have proven to be good candidates for this purpose. In this paper a monolithic millimetre-wave integrated circuit (MMIC) based CW radar system operating in the W-band (75–110 GHz) at 96 GHz is presented. The MMIC components are custom-built and make use of 100 nm metamorphic high electron mobility transistors (mHEMTs). The radar system is employing a frequency multiplier-by-twelve MMIC and a receiver MMIC both packaged in split-block modules. They allow for the determination of respiration and heartbeat frequency of a human target sitting in 1 m distance. The analysis of the measured data is carried out in time and frequency domain and each approach is shown to have its advantages and drawbacks.

Keywords

Cardiopulmonary activity Continuous Wave (CW) radar Heartbeat rate Millimeter wave radar MMICs Radar remote sensing Respiration Vital signs 

References

  1. 1.
    Ayhan, S., Pauli, M., Kayser, T., Scherr, S., Zwick, T.: FMCW radar system with additional phase evaluation for high accuracy range detection. In: European Radar Conference (EuRAD), pp. 117–120 (2011)Google Scholar
  2. 2.
    Ayhan, S., Diebold, S., Scherr, S., Tessmann, A., Ambacher, O., Kallfass, I., Zwick, T.: A 96 GHz radar system for respiration and heart rate measurements. In: IEEE MTT-S International Microwave Symposium Digest, pp. 1–3 (2012)Google Scholar
  3. 3.
    Balanis, C.A. (ed.): Antenna theory: analysis and design, 3rd edn. Knovel library. Wiley-Interscience, Hoboken, N.J. (2005)Google Scholar
  4. 4.
    Camargo, E.: Design of FET frequency multipliers and harmonic oscillators, xiii edn. Artech House microwave library. Artech House, Boston (1998)Google Scholar
  5. 5.
    Diebold, S., Ayhan, S., Scherr, S., Massler, H., Tessmann, A., Leuther, A., Zwick, T., Ambacher, O., Kallfass, I.: A 96 GHz MMIC CW radar system for remote detection of vital signs. In: 42nd European Microwave Conference (EuMC) (2012)Google Scholar
  6. 6.
    Droitcour, A., Boric-Lubecke, O., Lubecke, V., Lin, J., Kovacs, G.: Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring. IEEE Transactions on Microwave Theory and Techniques 52(3), 838–848 (2004). doi: 10.1109/TMTT.2004.823552 CrossRefGoogle Scholar
  7. 7.
    Droitcour, A., Lubecke, V., Lin, J., Boric-Lubecke, O.: A microwave radio for Doppler radar sensing of vital signs. In: IEEE MTT-S International Microwave Symposium Digest, vol. 1, pp. 175–178 (2001). doi: 10.1109/MWSYM.2001.966866
  8. 8.
    Immoreev, I., Tao, T.H.: UWB radar for patient monitoring. IEEE Aerospace and Electronic Systems Magazine 23(11), 11–18 (2008)CrossRefGoogle Scholar
  9. 9.
    Lai, J., Xu, Y., Gunawan, E., Chua, E., Maskooki, A., Guan, Y.L., Low, K.S., Soh, C.B., Poh, C.L.: Wireless Sensing of Human Respiratory Parameters by Low-Power Ultrawideband Impulse Radio Radar. IEEE Transactions on Instrumentation and Measurement 60(3), 928–938 (2011)CrossRefGoogle Scholar
  10. 10.
    Leib, M., Menzel, W., Schleicher, B., Schumacher, H.: Vital signs monitoring with a UWB radar based on a correlation receiver. In: Proceedings of the Fourth European Conference on Antennas and Propagation (EuCAP), pp. 1–5 (2010)Google Scholar
  11. 11.
    Li, C., Cummings, J., Lam, J., Graves, E., Wu, W.: Radar remote monitoring of vital signs. Microwave Magazine, IEEE 10(1), 47–56 (2009)CrossRefGoogle Scholar
  12. 12.
    Lohman, B., Boric-Lubecke, O., Lubecke, V., Ong, P., Sondhi, M.: A digital signal processor for Doppler radar sensing of vital signs. In: Proceedings of the 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 4, pp. 3359–3362 (2001)Google Scholar
  13. 13.
    M.C. Budge, J., Burt, M.: Range correlation effects in radars. In: Record of the 1993 IEEE National Radar Conference, pp. 212–216 (1993)Google Scholar
  14. 14.
    Mikhelson, I., Bakhtiari, S., Elmer, T., Sahakian, A.: Remote Sensing of Heart Rate and Patterns of Respiration on a Stationary Subject Using 94-GHz Millimeter-Wave Interferometry. IEEE Transactions on Biomedical Engineering 58(6), 1671–1677 (2011). doi: 10.1109/TBME.2011.2111371 CrossRefGoogle Scholar
  15. 15.
    Obeid, D., Sadek, S., Zaharia, G., Zein, G.E.: Noncontact heartbeat detection at 2.4, 5.8, and 60 GHz: A comparative study. Microwave and Optical Technology Letters 51(3), 666–669 (2009)CrossRefGoogle Scholar
  16. 16.
    Petkie, D., Benton, C., Bryan, E.: Millimeter wave radar for remote measurement of vital signs. In: IEEE Radar Conference, pp. 1 –3 (2009). doi: 10.1109/RADAR.2009.4977021
  17. 17.
    Skolnik, M.I. (ed.): Radar handbook, 2nd edn. McGraw-Hill, New York (1990)Google Scholar
  18. 18.
    Starr, I., Wood, F.C.: Twenty-year studies with the ballistocardiograph. Circulation 23(5), 714–732 (1961). doi: 10.1161/01.CIR.23.5.714 CrossRefGoogle Scholar
  19. 19.
    Tariq, A., Ghafouri-Shiraz, H.: Vital signs detection using Doppler radar and continuous wavelet Transform. In: Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp. 285–288 (2011)Google Scholar
  20. 20.
    Tessmann, A.: 220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications. IEEE J. Solid-State Circuits 40(10), 2070–2076 (2005)CrossRefGoogle Scholar
  21. 21.
    Wiesner, A.: A dual frequency interferometric CW radar for vital signs detection. In: European Radar Conference (EuRAD), pp. 365–368 (2011)Google Scholar
  22. 22.
    Xiao, Y., Lin, J., Boric-Lubecke, O., Lubecke, M.: Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the Ka-band. IEEE Transactions on Microwave Theory and Techniques 54(5), 2023–2032 (2006). doi: 10.1109/TMTT.2006.873625 CrossRefGoogle Scholar
  23. 23.
    Zito, D., Pepe, D., Mincica, M., Zito, F., Tognetti, A., Lanata, A., De Rossi, D.: SoC CMOS UWB Pulse Radar Sensor for Contactless Respiratory Rate Monitoring. IEEE Transactions on Biomedical Circuits and Systems 5(6), 503 -510 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • Sebastian Diebold
    • 1
  • Serdal Ayhan
    • 1
  • Steffen Scherr
    • 1
  • Hermann Massler
    • 2
  • Axel Tessmann
    • 2
  • Arnulf Leuther
    • 2
  • Oliver Ambacher
    • 2
  • Thomas Zwick
    • 1
  • Ingmar Kallfass
    • 1
    • 2
  1. 1.Karlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Fraunhofer Institute for Applied Solid-State Physics (IAF)FreiburgGermany

Personalised recommendations