Skip to main content
Log in

Effect of Ripple Taper on Coupling Modes in a Coaxial Bragg Structure

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Based on the mode-coupling method, numerical analysis is presented to demonstrate the influence of ripple taper on coupling modes on the frequency response in a coaxial Bragg structure. Results show that the interval between the band-gaps of the competing mode and the desired working mode is narrowed by use of a positive taper, but is expanded if a negative taper is employed, and the influence of the negative taper is more obviously advantage than the positive taper. The residual side-lobes of the frequency response on coupling modes can be effectively suppressed by employing the windowing-function technique. These characteristics of a tapered coaxial Bragg structure are favorable to improvement of the performance as a reflector or a filter in its application, also favorable to the mode selectivity and further weaken the excitation of unwanted spurious modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. Yariv and M. Nakamura, “Periodic Structures for Integrated Optics”, IEEE J. Quantum Electronics, QE-13, 233-253, Apr. 1977.

    Article  Google Scholar 

  2. H. Kogelnik and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Laser,” J. Appl. Phys., vol. 43, pp. 2327-2335, May 1972.

    Article  Google Scholar 

  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals Modeling the Flow of Light, New Jersey: Princeton University Press, 1995.

    Google Scholar 

  4. I. V. Konoplev, P. McGrane, W. He, A. Cross, A. Phelps, C. Whyte, K. Ronald, and C. Robertson, “Experimental study of coaxial free-electron maser based on two-dimensional distributed feedback,” Phys. Rev. Lett., vol. 96, pp. 035002, 2006.

    Article  Google Scholar 

  5. V. L. Bratman, G. G. Denisov, N. S. Ginzburg and M. I. Petelin, “FEL’s with Bragg reflection resonators: Cyclotron Autoresonance Masers vesus Ubitrons,” IEEE J. Quantum Electronics, vol. QE-19, pp. 282-293, Mar. 1983.

    Article  Google Scholar 

  6. A. J. Palmer, “Coupled-mode theory of overmoded cylindrical metal Bragg-reflectors,” IEEE J. Quantum Electronics, vol. QE-23, pp. 65-70, Jan. 1987.

    Article  Google Scholar 

  7. R. B. McCowan, A. W. Fliflet, S. H. Gold, V. L. Granatstein, and M. C. Wang, “Design of a waveguide resonator with rippled wall reflectors for a 100 GHz CARM oscillator experiment,” Int. J. Electronics, vol. 65, pp. 463-475, 1988.

    Article  Google Scholar 

  8. R. B. McCowan et al., “The Design of a 100-GHz CARM oscillator experiment,” IEEE Trans. on Electron Devices, vol. 36, pp. 1968-1975, Sept. 1989.

    Article  Google Scholar 

  9. C. K. Chong et al., “Bragg reflecors,” IEEE Trans. on Plasma Sci., vol. 20, pp. 393-402, Jun. 1992.

    Article  Google Scholar 

  10. S. Alberti et al., “Experimental Study of a 28 GHz High-Power Long-Pulse Cyclotron Autoresonance Maser Oscillator,” Phys. Rev. Lett., vol.71, pp. 2018-2021, Sept. 1993.

    Article  Google Scholar 

  11. G. Bekefi, A. DiRienzo, C. Leibovitch and B.G Danly, "A 35 GHz Cyclotron Autoresonance Maser Amplifier", Appl. Phys. Lett., 1989, v.54, p.1302.

    Article  Google Scholar 

  12. V.L. Bratman, G.G. Denisov, B.D. Kol'chugin, S.V. Samsonov, A.B. Volkov, "Experimental demonstration of high-efficiency Cyclotron-Autoresonance-Maser operation", Phys. Rev. Lett., 1995, v.75, no.17, p.3102.

    Article  Google Scholar 

  13. N. S. Ginzburg et al, “The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser,” Phys. Plasmas, vol. 9, pp. 2798-2802, Jun. 2002.

    Article  Google Scholar 

  14. T.S. Chu, F.V. Hartemann, B.G. Danly, R.J. Temkin ,"Single-mode operation of a Bragg Free-electron maser oscillator", Phys. Rev. Lett., 1994, v.72, no.15, p.2391.

    Article  Google Scholar 

  15. N.S. Ginzburg, A.A. Kaminsky, A. Kaminsky, N.Yu. Peskov, S.N. Sedykh, A.P. Sergeev, A.S. Sergeev ,"High-efficiency single-mode Free-Electron Maser oscillator based on a Bragg resonator with step of phase of corrugation", Phys. Rev. Lett., 2000, v.84, p.3574.

    Article  Google Scholar 

  16. A.V. Arzhannikov, N.S. Ginzburg, V.Yu. Zaslavsky, V.G. Ivanenko, I.A. Ivanov, P.V. Kalinin, A.S. Kuznetsov, S.A. Kuznetsov, N.Yu. Peskov, A.S. Sergeev, S.L. Sinitsky, V.D. Stepanov, "Production of powerful spatially coherent radiation in planar and coaxial FEM exploiting two-dimensional distributed feedback", JETP Lett., 2008, v.87, no.11, p.715.

    Article  Google Scholar 

  17. N.S. Ginzburg, N.Yu. Peskov, A.S. Sergeev, A.D.R. Phelps, Robb G.R.M, "Mode competition and control in free electron devices with one and two dimensional Bragg resonators", IEEE Trans. on Plasma Science, 1996, v.24, no.3, p.770.

    Article  Google Scholar 

  18. N.S. Ginzburg, N.Yu. Peskov, A.S. Sergeev, A.D.R Phelps., I.V. Konoplev, G.R.M., A.W. Robb Cross, A.V. Arzhannikov, S.L. Sinitsky ,"Theory and design of a free-electron maser with two-dimensional feedback driven by a sheet electron beam" Phys. Rev. E, 1999, v.60, no.1, p.935.

    Article  Google Scholar 

  19. N.S. Ginzburg, A.M. Malkin, N.Yu. Peskov, A.S. Sergeev, V.Yu. Zaslavsky, K. Kamada, Y. Soga,"Tunable terahertz band planar Bragg reflectors", Appl. Phys. Lett., 2009, v.95, p.043504.

    Article  Google Scholar 

  20. P. McGrane, I. V. Konoplev, K. Ronald, A. W. Cross and A. D. R. Phelps, “Experimental and theoretical study of constructive and destructive wave interference in a coaxial 1D Bragg structure,” in Joint 29th Int. Conf. Infrared Millimeter Waves and 12 th Int. Conf. on Terahertz Electronics Dig., Karlsruhe, pp. 177-178, 2004.

  21. I. V. Konoplev et al, “Progress of the Strathclyde free electron maser experiment using 2D Bragg structure,” Nucl. Instr. and Meth. A, vol. 445, pp. 236-240, 2000.

    Article  Google Scholar 

  22. I. V. Konoplev, P. McGrane, A. W. Cross, K. Ronald and A. D. R. Phelps, “Wave interference and band control in multiconductor one-dimensional Bragg structures,” J. Appl. Phys, vol. 97, pp. 073101, Mar. 2005.

    Article  Google Scholar 

  23. I. V. Konoplev, P. McGrane, A. D. R. Phelps, A. W. Cross, and K. Ronald, “Observation of photonic band-gap control in one-dimensional Bragg structures”, Appl. Phys. Lett., vol. 87, pp. 121104, 2005.

    Article  Google Scholar 

  24. J. J. Barroso and J. P. Leite Neto, “Design of coaxial Bragg reflectors,” IEEE Trans. on Plasma Sci., vol. 34, pp. 666-672, Jun. 2006.

    Article  Google Scholar 

  25. Y.-X. Lai and S.-C. Zhang, “Coaxial Bragg reflector with a corrugated inner rod”, IEEE Microwave and Wireless Components Lett., vol. 17, pp. 328-331, May 2007.

    Article  Google Scholar 

  26. S.-C. Zhang, X.-H. Chen, and Y.-X. Lai, “Effect of eccentricity on transmission in a coaxial Bragg structure”. Int. J. Infrared Millimeter Waves. Vol. 28, pp.1043–1050, 2007.

    Article  Google Scholar 

  27. Y.-X. Lai and S.-C. Zhang, “Multiwave interaction formulation of a coaxial Bragg structure and its experimental verification”, Phys. Plasmas, vol. 14, pp. 113301, 2007.

    Article  MathSciNet  Google Scholar 

  28. Y.-X. Lai and S.-C. Zhang, “Separation of band-gap overlap in a coaxial Bragg structure operating in higher-order mode at Terahertz frequency”, Phys. Plasmas, vol. 15, pp.033301, 2008.

    Article  Google Scholar 

  29. X.-H. Chen and S. C. Zhang, “Suppression of residual side-lobes in a coaxial Bragg reflector”, Int. J. Infrared Millimeter Waves. 29, 552–557, 2008.

    Article  Google Scholar 

  30. X.-Y. Ding, S.-C. Zhang, and Y.-C. Xie, “Characteristics of frequency response in a coaxial Bragg structure with tapered ripples”, High power laser and Particle Beams, 20(12), 2051-2054, 2008.

    Google Scholar 

Download references

Acknowledgements

This work was supported mainly by the National Natural Science Foundation of China (No.60871023) and the provincial Natural Science Foundation of Hainan (No. Hjsk2010-60).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Yong Ding.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ding, XY., Liu, H. & Lv, ZS. Effect of Ripple Taper on Coupling Modes in a Coaxial Bragg Structure. J Infrared Milli Terahz Waves 31, 1156–1163 (2010). https://doi.org/10.1007/s10762-010-9704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-010-9704-2

Keywords

Navigation