Journal of Infrared, Millimeter, and Terahertz Waves

, Volume 31, Issue 9, pp 1005–1014 | Cite as

Analysis of the Transmission Characteristics of the Inverted Trapezoidal-Ridge Waveguide

  • Xiao-Qiang Chen
  • En-En Ren
  • Mai Lu
  • Tao Wang
  • Lei Wang


As a new kind of broadband microwave component, transmission characteristics of the dominant TE mode in inverted trapezoidal-ridge waveguide have been analyzed by finite element method. Variations of the cutoff wavelength, single-mode bandwidth, field patterns, characteristic impedance, attenuation constant and power-handling capacity with the varied ridge dimensions have been investigated in details. The longer cutoff wavelength, broader single mode bandwidth and lower characteristic impedance can be achieved for smaller ridge gap. While the lower attenuation and higher power-handling capacity can be realized for larger ridge gap. Numerical results in this paper provide an extension to the existing design data for ridge waveguide and are considered helpful in microwave and millimeter-wave applications.


Inverted trapezoidal ridge waveguide Finite element method Transmission characteristics 


  1. 1.
    S.B. Cohn, Properties of ridge waveguide, Proc. IRE, 35 (1947), 783–788.CrossRefGoogle Scholar
  2. 2.
    J.R. Pyle, Cutoff wavelength of the TE10 mode in ridged rectangular waveguide of any aspect ratio, IEEE Trans. Microwave Theory Tech 14 (1966), 175–183.CrossRefGoogle Scholar
  3. 3.
    W. Sun and C.A. Balanis, Analysis and design of quadruple-ridged waveguides, IEEE Trans. Microwave Theory Tech 42 (1994), 2201–2207.CrossRefGoogle Scholar
  4. 4.
    W. Sun and C. A. Balanis, MFIE analysis and design of ridged waveguides, IEEE Trans. Microwave Theory Tech., 41, (1993), 1965–1971.CrossRefGoogle Scholar
  5. 5.
    Y. Rong and K.A. Zaki, Characteristics of generalized rectangular and circular ridge waveguides, IEEE Trans. Microwave Theory Tech 48 (2000), 258–265.CrossRefGoogle Scholar
  6. 6.
    J. Helzajn, Ridge waveguides and passive microwave components. Institute of Electrical Engineers, London, 2000.Google Scholar
  7. 7.
    M. Lu and P.J. Leonard, Design of trapezoidal-ridge waveguide by finite element method, IEE Proc.-Microw.Antennas Propag 151 (2004), 205–211.CrossRefGoogle Scholar
  8. 8.
    P.K. Saha and D. Guha, New broadband rectangular waveguide with L-shaped septa, IEEE Trans. Microwave Theory Tech., 40, (1992), 777–781.CrossRefGoogle Scholar
  9. 9.
    P.K. Saha and D. Guha, Bandwidth and Dispersion Characteristics of a New Rectangular Waveguide with Two L-Shaped Septa. IEEE Trans. Microwave Theory Tech., 47, (1999), 87–92.CrossRefGoogle Scholar
  10. 10.
    J.M. Jin, The finite element method in electromagnetics, 2nd ed., John Wiley and Sons, New York, (2002).MATHGoogle Scholar
  11. 11.
    J. Helszajn and M. Mckay, Voltage-current definition of impedance of double ridge waveguide using the finite element method, IEE Proc.-Microw. Antennas Propag., 145, (1998), 39–44.CrossRefGoogle Scholar
  12. 12.
    N. Marcuvitz, Waveguide Handbook. Stevenage, U.K.: Peregrinus, 1986.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Xiao-Qiang Chen
    • 1
  • En-En Ren
    • 1
  • Mai Lu
    • 2
  • Tao Wang
    • 1
  • Lei Wang
    • 1
  1. 1.Faculty of Automation and Electrical EngineeringLanzhou Jiaotong UniversityLanzhouPeople’s Republic of China
  2. 2.Key Lab. of Opt-Electronic Technology and Intelligent Control, Ministry of EducationLanzhou Jiaotong UniversityLanzhouPeople’s Republic of China

Personalised recommendations