Advertisement

Inflammation

, Volume 36, Issue 6, pp 1383–1392 | Cite as

Systemic Administration of FC-77 Dampens Ischemia–Reperfusion-Induced Acute Lung Injury in Rats

  • Shi-Jye Chu
  • Kun-Lun Huang
  • Shu-Yu Wu
  • Fu-Chang Ko
  • Geng-Chin Wu
  • Rui-Ying Li
  • Min-Hui Li
Article

Abstract

Systemic administration of perfluorocarbons (PFCs) reportedly attenuates acute lung injury induced by acid aspiration and phorbol myristate acetate. However, the effects of PFCs on ischemia–reperfusion (IR)-induced lung injury have not been investigated. Typical acute lung injury was induced in rats by 60 min of ischemia and 60 min of reperfusion in isolated and perfused rat lung model. Rat lungs were randomly assigned to receive PBS (control), 1 % FC-77, IR only, or IR with different doses of FC-77 (0.1 %, 0.5 %, or 1 %). Subsequently, bronchoalveolar lavage fluid (BALF), perfusate, and lung tissues were collected to evaluate the degree of lung injury. IR caused a significant increase in the following parameters: pulmonary arterial pressure, capillary filtration coefficient, lung weight gain, lung weight/body weight ratio, wet/dry lung weight ratio, and protein concentration in BALF. TNF-α and cytokine-induced neutrophil chemoattractant-1 concentrations in perfusate samples and MDA concentration and MPO activities in lung tissues were also significantly increased. Histopathology showed increased septal thickness and neutrophil infiltration in the lung tissues. Furthermore, NF-κB activity was significantly increased in the lungs. However, pretreatment with 1 % FC-77 prior to IR significantly attenuated the increases in these parameters. In conclusion, our results suggest that systemic FC-77 administration had a protective effect on IR-induced acute lung injury. These protective mechanisms may have been mediated by the inhibition of NF-κB activation and attenuation of subsequent inflammatory response.

KEY WORDS

ischemia–reperfusion acute lung injury perfluorocarbon FC-77 

Notes

Acknowledgments

This study was supported, in part, by NSC 98-2314-B-016-034-MY2 from the National Science Council of Taiwan; MAB101-63 from the Ministry of National Defense; grants 10132, 1032, and 10137 from Taoyuan Armed Forces General Hospital; and TSGH-102-066 from Tri-Service General Hospital, Taiwan.

References

  1. 1.
    Riess, J.G. 2005. Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology 33: 47–63.PubMedCrossRefGoogle Scholar
  2. 2.
    Hirschl, R.B., T. Pranikoff, C. Wise, M.C. Overbeck, P. Gauger, R.J. Schreiner, R. Dechert, and R.H. Bartlett. 1996. Initial experience with partial liquid ventilation in adult patients with the acute respiratory distress syndrome. JAMA: The Journal of the American Medical Association 275: 383–389.CrossRefGoogle Scholar
  3. 3.
    Papo, M.C., P.R. Paczan, B.P. Fuhrman, D.M. Steinhorn, L.J. Hernan, C.L. Leach, B.A. Holm, J.E. Fisher, and B.A. Kahn. 1996. Perfluorocarbon-associated gas exchange improves oxygenation, lung mechanics, and survival in a model of adult respiratory distress syndrome. Critical Care Medicine 24: 466–474.PubMedCrossRefGoogle Scholar
  4. 4.
    Lange, N.R., J.K. Kozlowski, R. Gust, S.D. Shapiro, and D.P. Schuster. 2000. Effect of partial liquid ventilation on pulmonary vascular permeability and edema after experimental acute lung injury. American Journal of Respiratory and Critical Care Medicine 162: 271–277.PubMedCrossRefGoogle Scholar
  5. 5.
    Hirschl, R.B., M. Croce, D. Gore, H. Wiedemann, K. Davis, J. Zwischenberger, and R.H. Bartlett. 2002. Prospective, randomized, controlled pilot study of partial liquid ventilation in adult acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 165: 781–787.PubMedCrossRefGoogle Scholar
  6. 6.
    Kacmarek, R.M., H.P. Wiedemann, P.T. Lavin, M.K. Wedel, A.S. Tutuncu, and A.S. Slutsky. 2006. Partial liquid ventilation in adult patients with acute respiratory distress syndrome. American Journal of Respiratory and Critical Care Medicine 173: 882–889.PubMedCrossRefGoogle Scholar
  7. 7.
    de Perrot, M., M. Liu, T.K. Waddell, and S. Keshavjee. 2003. Ischemia–reperfusion-induced lung injury. American Journal of Respiratory and Critical Care Medicine 167: 490–511.PubMedCrossRefGoogle Scholar
  8. 8.
    Matthay, M.A., and G.A. Zimmerman. 2005. Acute lung injury and the acute respiratory distress syndrome: four decades of inquiry into pathogenesis and rational management. American Journal of Respiratory Cell and Molecular Biology 33: 319–327.PubMedCrossRefGoogle Scholar
  9. 9.
    Chang, H., F.C. Kuo, Y.S. Lai, and T.C. Chou. 2005. Inhibition of inflammatory responses by FC-77, a perfluorochemical, in lipopolysaccharide-treated RAW 264.7 macrophages. Intensive Care Medicine 31: 977–984.PubMedCrossRefGoogle Scholar
  10. 10.
    Kawamae, K., G. Pristine, D. Chiumello, L.N. Tremblay, and A.S. Slutsky. 2000. Partial liquid ventilation decreases serum tumor necrosis factor-alpha concentrations in a rat acid aspiration lung injury model. Critical Care Medicine 28: 479–483.PubMedCrossRefGoogle Scholar
  11. 11.
    Nakata, S., K. Yasui, T. Nakamura, N. Kubota, and A. Baba. 2007. Perfluorocarbon suppresses lipopolysaccharide- and alpha-toxin-induced interleukin-8 release from alveolar epithelial cells. Neonatology 91: 127–133.PubMedCrossRefGoogle Scholar
  12. 12.
    Smith, T.M., D.M. Steinhorn, K. Thusu, B.P. Fuhrman, and P. Dandona. 1995. A liquid perfluorochemical decreases the in vitro production of reactive oxygen species by alveolar macrophages. Critical Care Medicine 23: 1533–1539.PubMedCrossRefGoogle Scholar
  13. 13.
    Lowe, K.C. 2003. Engineering blood: synthetic substitutes from fluorinated compounds. Tissue Engineering 9: 389–399.PubMedCrossRefGoogle Scholar
  14. 14.
    Maevsky, E., G. Ivanitsky, L. Bogdanova, O. Axenova, N. Karmen, E. Zhiburt, R. Senina, S. Pushkin, I. Maslennikov, A. Orlov, and I. Marinicheva. 2005. Clinical results of Perftoran application: present and future. Artificial Cells, Blood Substitutes, and Immobilization Biotechnology 33: 37–46.PubMedCrossRefGoogle Scholar
  15. 15.
    Chang, H., M.H. Li, C.W. Chen, H.C. Yan, K.L. Huang, and S.J. Chu. 2008. Intravascular FC-77 attenuates phorbol myristate acetate-induced acute lung injury in isolated rat lungs. Critical Care Medicine 36: 1222–1229.PubMedCrossRefGoogle Scholar
  16. 16.
    Nader, N.D., P.R. Knight, B.A. Davidson, S.S. Safaee, and D.M. Steinhorn. 2000. Systemic perfluorocarbons suppress the acute lung inflammation after gastric acid aspiration in rats. Anesthesia and Analgesia 90: 356–361.PubMedGoogle Scholar
  17. 17.
    Bajaj, A.K., M.A. Cobb, R. Virmani, J.C. Gay, R.T. Light, and M.B. Forman. 1989. Limitation of myocardial reperfusion injury by intravenous perfluorochemicals. Role of neutrophil activation. Circulation 79: 645–656.PubMedCrossRefGoogle Scholar
  18. 18.
    Rice, H.E., R. Virmani, C.L. Hart, F.D. Kolodgie, and A. Farb. 1990. Dose-dependent reduction of myocardial infarct size with the perfluorochemical Fluosol-DA. American Heart Journal 120: 1039–1046.PubMedCrossRefGoogle Scholar
  19. 19.
    Parker, J.C., and M.I. Townsley. 2004. Evaluation of lung injury in rats and mice. American Journal of Physiology. Lung Cellular and Molecular Physiology 286: L231–L246.PubMedCrossRefGoogle Scholar
  20. 20.
    Chu, S.J., D.M. Chang, D. Wang, Y.H. Chen, C.W. Hsu, and K. Hsu. 2002. Fructose-1,6-diphosphate attenuates acute lung injury induced by ischemia–reperfusion in rats. Critical Care Medicine 30: 1605–1609.PubMedCrossRefGoogle Scholar
  21. 21.
    Li, M.H., K.L. Huang, S.Y. Wu, C.W. Chen, H.C. Yan, K. Hsu, C.W. Hsu, S.H. Tsai, and S.J. Chu. 2009. Baicalin attenuates air embolism-induced acute lung injury in rat isolated lungs. British Journal of Pharmacology 157: 244–251.PubMedCrossRefGoogle Scholar
  22. 22.
    Wu, S.Y., C.P. Wu, B.H. Kang, M.H. Li, S.J. Chu, and K.L. Huang. 2012. Hypercapnic acidosis attenuates reperfusion injury in isolated and perfused rat lungs. Critical Care Medicine 40: 553–559.PubMedCrossRefGoogle Scholar
  23. 23.
    Abraham, E. 2003. Neutrophils and acute lung injury. Critical Care Medicine 31: S195–S199.PubMedCrossRefGoogle Scholar
  24. 24.
    Woods, C.M., G. Neslund, E. Kornbrust, and S.F. Flaim. 2000. Perflubron attenuates neutrophil adhesion to activated endothelial cells in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology 278: L1008–L1017.PubMedGoogle Scholar
  25. 25.
    Steinhorn, D.M., M.C. Papo, A.T. Rotta, A. Aljada, B.P. Fuhrman, and P. Dandona. 1999. Liquid ventilation attenuates pulmonary oxidative damage. Journal of Critical Care 14: 20–28.PubMedCrossRefGoogle Scholar
  26. 26.
    Rossman, J.E., M.G. Caty, G.A. Rich, H.L. Karamanoukian, and R.G. Azizkhan. 1996. Neutrophil activation and chemotaxis after in vitro treatment with perfluorocarbon. Journal of Pediatric Surgery 31: 1147–1150. discussion 1150–1141.PubMedCrossRefGoogle Scholar
  27. 27.
    Fernandez, R., V. Sarma, E. Younkin, R.B. Hirschl, P.A. Ward, and J.G. Younger. 2001. Exposure to perflubron is associated with decreased Syk phosphorylation in human neutrophils. Journal of Applied Physiology 91: 1941–1947.PubMedGoogle Scholar
  28. 28.
    Goodman, R.B., J. Pugin, J.S. Lee, and M.A. Matthay. 2003. Cytokine-mediated inflammation in acute lung injury. Cytokine & Growth Factor Reviews 14: 523–535.CrossRefGoogle Scholar
  29. 29.
    Khimenko, P.L., G.J. Bagby, J. Fuseler, and A.E. Taylor. 1998. Tumor necrosis factor-alpha in ischemia and reperfusion injury in rat lungs. Journal of Applied Physiology 85: 2005–2011.PubMedGoogle Scholar
  30. 30.
    Sekido, N., N. Mukaida, A. Harada, I. Nakanishi, Y. Watanabe, and K. Matsushima. 1993. Prevention of lung reperfusion injury in rabbits by a monoclonal antibody against interleukin-8. Nature 365: 654–657.PubMedCrossRefGoogle Scholar
  31. 31.
    von der Hardt, K., E. Schoof, M.A. Kandler, J. Dotsch, and W. Rascher. 2002. Aerosolized perfluorocarbon suppresses early pulmonary inflammatory response in a surfactant-depleted piglet model. Pediatric Research 51: 177–182.PubMedCrossRefGoogle Scholar
  32. 32.
    Burkhardt, W., P. Koehne, H. Wissel, S. Graf, H. Proquitte, R.R. Wauer, and M. Rudiger. 2008. Intratracheal perfluorocarbons diminish LPS-induced increase in systemic TNF-alpha. American Journal of Physiology. Lung Cellular and Molecular Physiology 294: L1043–L1048.PubMedCrossRefGoogle Scholar
  33. 33.
    Thomassen, M.J., L.T. Buhrow, and H.P. Wiedemann. 1997. Perflubron decreases inflammatory cytokine production by human alveolar macrophages. Critical Care Medicine 25: 2045–2047.PubMedCrossRefGoogle Scholar
  34. 34.
    Wissel, H., W. Burkhardt, J. Rupp, R.R. Wauer, and M. Rudiger. 2006. Perfluorocarbons decrease Chlamydophila pneumoniae-mediated inflammatory responses of rat type II pneumocytes in vitro. Pediatric Research 60: 264–269.PubMedCrossRefGoogle Scholar
  35. 35.
    Liu, S.F., and A.B. Malik. 2006. NF-kappa B activation as a pathological mechanism of septic shock and inflammation. American Journal of Physiology. Lung Cellular and Molecular Physiology 290: L622–L645.PubMedCrossRefGoogle Scholar
  36. 36.
    Long, S.M., V.E. Laubach, C.G. Tribble, A.K. Kaza, S.M. Fiser, D.C. Cassada, J.A. Kern, and I.L. Kron. 2003. Pyrrolidine dithiocarbamate reduces lung reperfusion injury. The Journal of Surgical Research 112: 12–18.PubMedCrossRefGoogle Scholar
  37. 37.
    Ross, S.D., I.L. Kron, J.J. Gangemi, K.S. Shockey, M. Stoler, J.A. Kern, C.G. Tribble, and V.E. Laubach. 2000. Attenuation of lung reperfusion injury after transplantation using an inhibitor of nuclear factor-kappaB. American Journal of Physiology. Lung Cellular and Molecular Physiology 279: L528–L536.PubMedGoogle Scholar
  38. 38.
    Haeberle, H.A., F. Nesti, H.J. Dieterich, Z. Gatalica, and R.P. Garofalo. 2002. Perflubron reduces lung inflammation in respiratory syncytial virus infection by inhibiting chemokine expression and nuclear factor-kappa B activation. American Journal of Respiratory and Critical Care Medicine 165: 1433–1438.PubMedCrossRefGoogle Scholar
  39. 39.
    Haufe, D., E. Koenigshausen, L. Knels, M. Wendel, S.N. Stehr, and T. Koch. 2008. Leukocyte antibacterial functions are not impaired by perfluorocarbon exposure in vitro. American Journal of Physiology. Lung Cellular and Molecular Physiology 295: L134–L142.PubMedCrossRefGoogle Scholar
  40. 40.
    Haufe, D., T. Luther, M. Kotzsch, L. Knels, and T. Koch. 2004. Perfluorocarbon attenuates response of concanavalin A-stimulated mononuclear blood cells without altering ligand–receptor interaction. American Journal of Physiology. Lung Cellular and Molecular Physiology 287: L210–L216.PubMedCrossRefGoogle Scholar
  41. 41.
    Koch, T., M. Ragaller, D. Haufe, A. Hofer, M. Grosser, D.M. Albrecht, M. Kotzsch, and T. Luther. 2001. Perfluorohexane attenuates proinflammatory and procoagulatory response of activated monocytes and alveolar macrophages. Anesthesiology 94: 101–109.PubMedCrossRefGoogle Scholar
  42. 42.
    Obraztsov, V.V., G.G. Neslund, E.S. Kornbrust, S.F. Flaim, and C.M. Woods. 2000. In vitro cellular effects of perfluorochemicals correlate with their lipid solubility. American Journal of Physiology. Lung Cellular and Molecular Physiology 278: L1018–L1024.PubMedGoogle Scholar
  43. 43.
    Memezawa, H., Y. Katayama, J. Shimizu, S. Suzuki, F. Kashiwagi, T. Kamiya, and A. Terashi. 1990. Effects of fluosol-DA on brain edema, energy metabolites, and tissue oxygen content in acute cerebral ischemia. Advances in Neurology 52: 109–118.PubMedGoogle Scholar
  44. 44.
    Mosca, R.S., T.J. Rohs, R.R. Waterford, K.F. Childs, L.A. Brunsting, and S.F. Bolling. 1996. Perfluorocarbon supplementation and postischemic cardiac function. Surgery 120: 197–204.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Shi-Jye Chu
    • 1
    • 3
  • Kun-Lun Huang
    • 2
  • Shu-Yu Wu
    • 2
  • Fu-Chang Ko
    • 3
  • Geng-Chin Wu
    • 3
  • Rui-Ying Li
    • 2
  • Min-Hui Li
    • 2
    • 4
  1. 1.Department of Internal Medicine, Tri-Service General HospitalNational Defense Medical CenterTaipeiTaiwan
  2. 2.Institute of Undersea and Hyperbaric MedicineNational Defense Medical CenterTaipeiRepublic of China
  3. 3.Department of Internal MedicineTaoyuan Armed Forces General HospitalLongtan TownshipTaiwan
  4. 4.Institute of Aerospace MedicineNational Defense Medical CenterTaipeiRepublic of China

Personalised recommendations