, Volume 674, Issue 1, pp 91–104 | Cite as

Cultivating the climate: socio-economic prospects and consequences of climate-friendly peat land management in Germany

  • Lena Schaller
  • Jochen Kantelhardt
  • Matthias Drösler
Wetland Restoration


About 30% of the world’s soil carbon is stored in peat soils. Peat land’s functional principle of carbon storage greatly depends on management strategies. Therefore, agricultural peat land use becomes a focal point of interest in the current debate on climate protection. Agricultural management demands a drawdown of the water-level that causes degradation of the soils, as well as trace-gas emissions which have a negative impact on greenhouse-gas balance. Climate-friendly peat land management strategies, however, demand enhanced groundwater tables and decreased land-use intensity. Against this background, we analyse ways of re-organising agricultural peat land use within a case study located in Germany, where intensive peat land use accounts for 2.3–5.1% of the country’s overall greenhouse-gas emission. The study takes place in six regions which represent all possible socio-economic and natural conditions with regard to the range of existing peat land types, range of management and cultivation types, as well as the range of land-use intensity. To analyse potentials and effects of re-organising peat land use, stakeholder workshops and extensive farm surveys were carried out. The results indicate that reservations exist as regards a re-organisation of peat land management. Financial compensation for farmers appears necessary. The results also show that the potential of rearrangement throughout the regions varies significantly, mainly according to the existing level of interconnection and cooperation between local stakeholders, the technical feasibility of restoration and water logging and the level of agricultural profitability of peat land cultivation with regard to income, capital commitment and the share of affected peat land area.


Agricultural peat land use Reduction of greenhouse gases Farm survey Economic consequences 



This work has been granted by the Federal Ministry of Education and Research (FKZ 01LS05047).


  1. Augustin, J., 2003. Einfluss des Grundwasserstandes auf die Emission von klimarelevanten Spurengasen und die C- und N-Umsetzungsprozesse in nordostdeutschen Niedermooren. In Stoffausträge aus wiedervernässten Niedermooren: Fachbeiträge auf einem wissenschaftlichen Kolloquium in Güstrow am 25. Februar 2002. Landesamt für Umwelt, Naturschutz und Geologie Mecklenburg-Vorpommern, Güstrow: 38–54.Google Scholar
  2. Bryson, J. M., 2004. What to do when stakeholders matter: a guide to stakeholder identification and analysis techniques. Public Management Review 6: 21–53.CrossRefGoogle Scholar
  3. Bundesministerium der Justiz, 2007. Verordnung über die Anwendung von Düngemitteln, Bodenhilfsstoffen, Kultursubstraten und Pflanzenhilfsmitteln nach den Grundsätzen der guten fachlichen Praxis (Düngeverordnung – DüV). [29.12.2010, available at:].
  4. Byrne, K. A., B. Chojnicki, T. R. Christensen, M. Drösler, & A. Freibauer, 2004. EU peat lands: current carbon stocks and trace gas fluxes. CarboEurope-GHG Concerted Action – Synthesis of the European Greenhouse Gas Budget, Report 4/2004, Specific Study, Tipo-Lito Recchioni, Viterbo.Google Scholar
  5. Drösler, M., 2005. Trace gas exchange and climatic relevance of bog ecosystems, Southern Germany. Dissertation an der Technischen Universität München, published online: urn:nbn:de:bvb:91-diss20050901-12494310.
  6. Drösler, M., A. Freibauer, T. R. Christensen, & T. Friborg, 2008. Observations and status of peat land greenhouse gas emissions in Europe. In Dolman, A. J., R. Valentini & A. Freibauer (eds), Observations and Status of Peat land Greenhouse Gas Emissions in Europe, Ecological Studies 203: The Continental-Scale Greenhouse Gas Balance of Europe, New York: 243–261.Google Scholar
  7. Hübner, R., J. Kantelhardt & L. Schaller, 2008. Climate protection – land use in peat-land areas: network analysis as a method for actors and systems analysis. In Daub, C.-H., P. Burger & Y. Scherrer (eds), Creating Values for Sustainable Development – Proceedings of the 2nd International Sustainability Conference, 21–22 August, Basel, Schweiz.Google Scholar
  8. Joosten, H. & D. Clarke, 2002. Wise Use of Mires and Peat lands – Background and Principles Including a Framework for Decision Making. International Mire Conservation Group and International Peat Society, Finland.Google Scholar
  9. Kantelhardt, J. & H. Hoffmann, 2001. Ökonomische Beurteilung landschaftsökologischer Auflagen für die Landwirtschaft – dargestellt am Beispiel Donauried. In Berichte über Landwirtschaft 3/2001, Germany: 415–436.Google Scholar
  10. Kasimir-Klemedtsson, A., L. Klemedtsson, K. Berglund, P. Martikainen, J. Silvola & O. Oenema, 1997. Greenhouse gas emissions from farmed organic soils: a review. Soil Use and Management 13: 229–304 (54 ref.); 245–250.Google Scholar
  11. Limpens, J., F. Berendse1, C. Blodau, J. G. Canadell, C. Freeman, J. Holden, N. Roulet, H. Rydin & G. Schaepman-Strub1, 2008. Peat lands and the carbon cycle: from local processes to global implications – a synthesis. Biogeosciences 5: 1475–1491.Google Scholar
  12. MPA, 2004. Stakeholder Participation: A Synthesis of Current Literature. Published online by the National Marine Protected Areas Center in cooperation with the National Oceanic and Atmospheric Administration Coastal Services Center. [29.12.2010, available at].
  13. NIR, 2010. Berichterstattung unter der Klimarahmenkonvention der Vereinten Nationen 2010. Nationaler Inventarbericht Zum Deutschen Treibhausgasinventar 1990–2008, Umweltbundesamt. EU-Submission, [16.06.2010, available at].
  14. Nutt, P., 2002. Why Decisions Fail: Avoiding the Blunders and Traps That Lead to Debacles. Berrett-Koehler Publishers, San Francisco.Google Scholar
  15. Pfadenhauer, J. & M. Droesler, 2005. Project submission “Climate change mitigation via peat land conservation”, unpublished.Google Scholar
  16. Post, W. M., W. R. Emanuel, P. J. Zinke & A. G. Stangenberger, 1982. Soil carbon pools and world life zones. Nature 298: 156–159.CrossRefGoogle Scholar
  17. Turaga, R. M. R., 2001. Public Participation in Environmental Decision Making: What Process Factors Affect Acceptability of Decisions? School of Public Policy, Georgia Institute of Technology, Atlanta.Google Scholar
  18. Turunen, J., E. Tomppo, K. Tolonen & A. Reinikainen, 2002. Estimating carbon accumulation rates of undrained mires in Finland – application to boreal and subarctic regions. The Holocene 12: 69–80.CrossRefGoogle Scholar
  19. Vogel, T., 2002. Nutzung und Schutz von Niedermooren: empirische Untersuchung und ökonomische Bewertung für Brandenburg und Mecklenburg-Vorpommern. Der Andere Verlag, Osnabrück.Google Scholar
  20. Webler, T., S. Tuler & R. Krueger, 2001. What is a good public participation process? Five perspectives from the public. Environmental Management 27: 435–450.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2011

Authors and Affiliations

  • Lena Schaller
    • 1
  • Jochen Kantelhardt
    • 1
  • Matthias Drösler
    • 2
  1. 1.Institute of Agricultural and Forestry EconomicsUniversity of Natural Resources and Life Sciences ViennaViennaAustria
  2. 2.Department of Ecology and Ecosystem-ManagementTechnical University of MunichFreisingGermany

Personalised recommendations