, Volume 588, Issue 1, pp 69–82 | Cite as

Modelling sand/mud transport and morphodynamics in the Seine river mouth (France): an attempt using a process-based approach



The mouth of the Seine River estuary (France) has undergone marked morphological evolution over several decades mainly due to engineering works aimed at improving access to Rouen and Le Havre harbours. The intertidal areas are decreasing in size and the lower estuary is accumulating sediment and prograding. In order to understand and better describe the major morphological behaviours of the estuary, a morphodynamic numerical model was developed within the Seine-Aval program. At the end of the 1st part of the research program, a validated fine sediment transport model (3D) was available (Le Hir et al., 2001b). As the present morphological study addresses medium-term issues (a few decades), and because of the need to investigate impacts of local structures or events, we chose to use the so-called “process-based approach” starting from the existing model. First, the existing model was upgraded to account for (suspended) sand transport, and to achieve coupling between morphological changes and sediment transport. Erodability of the sediment accounts for the respective proportions of mud and sand. Simulations starting from an arbitrary surficial sediment cover show that the model is able to reproduce realistic sediment patterns. For example, it is able to change the sediment nature on the intertidal flat near Le Havre from sand to mud. Observed structures of suspended sediment are also reproduced: fine particles mainly follow the turbidity maximum whereas significant concentrations of sand grains in suspension are found where the hydrodynamic stresses are intense. Concerning morphodynamics, simulations with real forcing over one year are discussed. The effect of waves on the bathymetric evolution of the mouth is shown and the sensitivity of morphodynamics to the coupling procedure is tested.


Morphodynamics Sediment transport modelling Sand and mud mixtures 



This work was carried out in the framework of the Seine-Aval Scientific Programme coordinated by the Regional Council of Haute Normandie. Hydrographic data were provided by Rouen Port Authority.


  1. Avoine, J., G. P. Allen, M Nichols., J. C. Salomon & C. Larsonneur, 1981. Suspended sediment transport in the Seine estuary, France: effect of man-made modifications on estuary-shelf sedimentology. Marine Geology 40: 119–137.CrossRefGoogle Scholar
  2. Brenon, I. & P. Le Hir, 1999. Modelling the turbidity maximum in the Seine estuary (France): identification of formation processes. Estuarine, coastal and shelf science 49: 525–544.CrossRefGoogle Scholar
  3. Beach, R. A. & R. W. Sternberg, 1988. Suspended sediment transport in the surf zone: response to cross-shore infragravity motion. Marine Geology 80: 671–679.CrossRefGoogle Scholar
  4. Berlamont, J. & H. Torfs, 1995. Modelling (partly) cohesive sediment transport in sewer systems. International Conference on Sewer Solids-Characteristics, movement, effects and control, 5–8 September, Dundee (UK).Google Scholar
  5. Chesher, T. J. & M. C. Ockenden, 1997. Numerical modelling of mud and sand mixtures. Cohesive sediments In Burt, N., R. Parker & J. Watts (eds), John Wiley & Sons, Newyork, NY, USA, 395–406.Google Scholar
  6. Cugier, P. & P. Le Hir, 2002. Development of a 3D Hydrodynamic model for Coastal Ecosystem Modelling. Application to the plume of the Seine River (France). Estuarine, Coastal and Shelf Science, 55: 673–695.CrossRefGoogle Scholar
  7. Davies, A. G., L. C. Van Rijn, J. S. Damgaard, J. Van de Graff & J. S. Ribberink, 2002. Intercomparison of research and practical sand transport models. Journal of Coastal Engineering, 46: 1–23.CrossRefGoogle Scholar
  8. De Vriend, H. J., M. Capobianco, B. Latteux, T. Chesher & M. J. F. Stive, 1993. Long-Term Modelling of Coastal Morphology: A Review. In de Vriend, H. J. (ed.), Coastal Morphodynamics: Processes and Modelling. Coastal Engineering 21: 225–269.Google Scholar
  9. Guézennec, L., R. Lafite, J. P. Dupont, R. Meyer & D. Boust, 1999. Hydrodynamic of suspended particulate matter in the Tidal Freshwater Zone of a macrotidal estuary (The Seine estuary, France). Estuaries, 22(3A): 717–727.CrossRefGoogle Scholar
  10. Le Hir, P., P. Bassoulet & H. Jestin, 2001a. Application of the continuous modeling concept to simulate high-concentration suspended sediment in a macrotidal estuary. In McAnally, W. H. & A. J. Mehta (eds), Coastal and Estuarine Fine Sediment Processes, Elsevier, 229–247.Google Scholar
  11. Le Hir, P., A. Ficht, R. Silva Jacinto, P. Lesueur, J. P. Dupont, R. Lafite, I. Brenon, B. Thouvenin & P. Cugier, 2001b Fine Sediment Transport and Accumulations at the Mouth of the Seine Estuary (France). Estuaries 24(6B): 950–963.CrossRefGoogle Scholar
  12. Lesourd, S., P. Lesueur, J. C. Brun-Cottan, J. P. Auffret, N. Poupinet & B. Laignel, 2001. Morphosedimentary evolution of a macrotidal estuary subjected to human impact ; the example of the Seine (France). Estuaries, 24(6b): 940–949.CrossRefGoogle Scholar
  13. Mehta, A. J. & M. Alkhalidi, 2004. Some Observations on the Role of Mud in Modulating Sand Transport. 2004 Ocean Science Meeting, Portland.Google Scholar
  14. Mitchener, H. & H. Torfs, 1996. Erosion of mud/sand mixtures. Coastal Engineering 29: 1–25.CrossRefGoogle Scholar
  15. Ockenden, M. C. & H. Delo, 1988. Consolidation and erosion of estuarine mud and sand mixtures. HR Wallingford Report No. SR 149.Google Scholar
  16. Panagiotopoulos, I., G. Voulgaris & M. B. Collins, 1997. The influence of clay on the threshold of movement of fine sandy beds. Coastal Engineering 32: 19–43.CrossRefGoogle Scholar
  17. Silva Jacinto, R., 2001. Action des vagues sur les estrans et vasières. Application à l’estuaire de la Seine. Thèse de l’université de Rouen, 231 pp.Google Scholar
  18. Smith, J. D. & S. R. McLean, 1977. Spatially averaged flow over a wavy surface. Journal of Geophysical Research 82: 1735–1746.CrossRefGoogle Scholar
  19. SOGREAH, 1997. Port 2000, Etude sédimentologique sur modèle physique, Rapport de synthèse, 45 pp.Google Scholar
  20. Soulsby, R. L., 1997. Dynamics of Marine Sands. Thomas, Telford publications.Google Scholar
  21. Torfs, H., 1994a. Erosion of mixed cohesive/non cohesive sediments in uniform flow. In 4th Nearshore and Estuarine Cohesive Sediment Transport Conference INTERCOH’94, Wallingford, Paper No. 20.Google Scholar
  22. Torfs, H., 1994b. Erosion of layered sand-mud beds in uniform flow. In Proceedings of the 24th International Conference on Coastal Engineering, Kobe, 3360–3368.Google Scholar
  23. Torfs, H., 1995. Erosion of sand/mud mixtures. Katholieke Universiteit Leuven, faculteit der Toegepaste Wetenschappen, Departement Burgelijke Bouwkunde, Laboratorium voor Hydraulica, Belgium.Google Scholar
  24. Torfs, H., H. Williamson, H. Huysentruyt et, & E. Toorman, 1996. Settling and consolidation of mud/sand mixtures. Coastal Engineering 29: 27–45.CrossRefGoogle Scholar
  25. Torfs, H., J. Jiang & A. J. Mehta, 2001. Assessment of the erodibility of fine/coarse sediment mixtures. In McAnally, W. H. & A. J. Mehta (eds), Coastal and Estuarine Sediment Processes. Elsevier Science B.V.Google Scholar
  26. Van Ledden, M., 2001. Modelling of sand-mud mixtures. Part II: A process-based sand-mud model. WL | DELFT HYDRAULICS (Z2840).Google Scholar
  27. Van Ledden, M. & Z. B. Wang, 2001. Sand-mud morphodynamics in an estuary In: Proceedings 2nd Symposium on River, Coastal and Estuarine Morphodynamics Conference, Obihiro, Japan, 505–514.Google Scholar
  28. Van Rijn, L. C., 1984a. Sediment pick-up functions. Journal of Hydraulic Engineering 110(10): 1494–1502.Google Scholar
  29. Van Rijn, L. C., 1984b. Sediment transport part 1: bed load transport. Journal of Hydraulic Engineering 110(10): 1613–1641.CrossRefGoogle Scholar
  30. Wang, Z. B., Karssen, B., Fokkink, R. J. & Langerak, A., 1998. A dynamical/empirical model for long-term morphological development of estuaries. In Dronkers, J. & M. B. A. M. Scheffers (eds), Physics of Estuaries and Coastal Seas, Balkema, Rotterdam.Google Scholar
  31. Williamson, H. J. & Ockenden, M. C., 1992. Tidal Transport of Mud/Sand Mixtures, Laboratory Tests. HR Wallingford, Report SR 286.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2007

Authors and Affiliations

  • B. Waeles
    • 1
    • 2
    • 3
  • P. Le Hir
    • 1
  • P. Lesueur
    • 2
  • N. Delsinne
    • 2
  1. 1.IFREMER laboratoireDYNECO/PHYSED Centre de BrestPlouzaneFrance
  2. 2.Laboratoire de Morphodynamique Continentale et CôtièreUniversité de CaenCaenFrance
  3. 3.CreoceanZone TechnoceanLa RochelleFrance

Personalised recommendations