Skip to main content
Log in

An Incremental Algorithm for Computing the Grounded Extension of Dynamic Abstract Argumentation Frameworks

  • Published:
Group Decision and Negotiation Aims and scope Submit manuscript

Abstract

Several formalisms have been introduced to model disputes between agents. Abstract argumentation is a simple, yet powerful formalism for modeling disputes by abstracting from the internal structure of arguments. Much work has been done to characterize fast algorithms for ‘static’ argumentation frameworks which are assumed to be fixed, in the sense that they do not change during a dispute. However, argumentation frameworks are highly dynamic in practice. For instance, applications of argumentation for negotiation and persuasion are usually based on protocols where agents state their arguments and attacks one after the other in a dynamic process during which the outcome of the debate evolves. We focus on one of the most popular argumentation semantics, namely the grounded semantics, and deal with the problem of recalculating the extensions of argumentation frameworks after adding or deleting attacks or arguments. In particular, we propose an incremental algorithm for the efficient computation of the grounded semantics, useful in dynamic contexts where argumentation frameworks are continuously updated to consider new information. We report on experiments showing that our incremental algorithm is on average faster than CoQuiAAS, the solver that won the last edition of the international competition on computational models of argumentation for the task of computing the grounded extension of an argumentation framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. A detailed list of the differences between (Greco and Parisi 2017) and this paper is reported in the last paragraph of the related work section.

  2. Available at http://argumentationcompetition.org/2015/iccma15_testcases.zip.

  3. Available at http://argumentationcompetition.org/2015/iccma2015_benchmarks.zip.

References

  • Alfano G, Greco S, Parisi F (2017a) Efficient computation of extensions for dynamic abstract argumentation frameworks: an incremental approach. In: Proceedings of the twenty-sixth international joint conference on artificial intelligence (IJCAI), pp 49–55

  • Alfano G, Greco S, Parisi F (2017b) Computing stable and preferred extensions of dynamic bipolar argumentation frameworks. In: Proceedings of the 1st workshop on advances in argumentation in artificial intelligence co-located with XVI international conference of the Italian Association for artificial intelligence (\(AI{^3}@AI*IA\)), pp 28–42

  • Alfano G, Greco S, Parisi F (2018a) A meta-argumentation approach for the efficient computation of stable and preferred extensions in dynamic bipolar argumentation frameworks. Intell Artif 12(2):193–211

    Google Scholar 

  • Alfano G, Greco S, Parisi F (2018b) Computing extensions of dynamic abstract argumentation frameworks with second-order attacks. In: Proceedings of the 22nd international database engineering & applications symposium (IDEAS), pp 183–192

  • Alfano G, Greco S, Parisi F, Simari GI, Simari GR (2018c) Incremental computation of warranted arguments in dynamic defeasible argumentation: the rule addition case. In: Proceedings of the 33rd annual ACM symposium on applied computing (SAC), pp 911–917

  • Alfano G, Greco S, Parisi F, Simari GI, Simari GR (2018d) An incremental approach to structured argumentation over dynamic knowledge bases. In: Proceedings of the sixteenth international conference of principles of knowledge representation and reasoning (KR), pp 78–87

  • Alfano G, Greco S, Parisi F (2019) An efficient algorithm for skeptical preferred acceptance in dynamic argumentation frameworks. In: Proceedings of international joint conference on artificial intelligence (IJCAI)

  • Amgoud L, Vesic S (2012) Revising option status in argument-based decision systems. J Logic Comput 22(5):1019–1058

    Article  Google Scholar 

  • Baroni P, Caminada M, Giacomin M (2011) An introduction to argumentation semantics. Knowl Eng Rev 26(4):365–410

    Article  Google Scholar 

  • Baroni P, Giacomin M, Liao B (2014) On topology-related properties of abstract argumentation semantics. A correction and extension to dynamics of argumentation systems: a division-based method. Artif Intell 212:104–115

    Article  Google Scholar 

  • Bastos MT, Puschmann C, Travitzki R (2013) Tweeting across hashtags: overlapping users and the importance of language, topics, and politics. In: 24th ACM conference on hypertext and social media (part of ECRC) (HT), pp 164–168

  • Baumann R (2011) Splitting an argumentation framework. In: Proceedings of international conference on logic programming and nonmonotonic reasoning (LPNMR), pp 40–53

  • Baumann R (2012) Normal and strong expansion equivalence for argumentation frameworks. Artif Intell 193:18–44

    Article  Google Scholar 

  • Baumann R (2014) Context-free and context-sensitive kernels: update and deletion equivalence in abstract argumentation. In: Proceedings of the European conference on artificial intelligence (ECAI), pp 63–68

  • Baumann R, Brewka G (2010) Expanding argumentation frameworks: enforcing and monotonicity results. In: Proceedings of international conference computational models of argument (COMMA), pp 75–86

  • Baumann R, Brewka G, Dvorák W, Woltran S (2012) Parameterized splitting: a simple modification-based approach. In: Correct reasoning—essays on logic-based AI in honour of Vladimir Lifschitz, pp 57–71

  • Bench-Capon TJM, Dunne Paul E (2007) Argumentation in artificial intelligence. Artif Intell 171(1015):619–641

    Article  Google Scholar 

  • Bentahar J, Labban J (2011) An argumentation-driven model for flexible and efficient persuasive negotiation. Group Decis Negot 20(4):411–435

    Article  Google Scholar 

  • Bisquert P, Cayrol C, de Saint-Cyr FD, Lagasquie-Schiex M-C (2013) Characterizing change in abstract argumentation systems. In: Trends in belief revision and argumentation dynamics, vol 48, pp 75–102

  • Bistarelli S, Rossi F, Santini F (2017) A conarg-based library for abstract argumentation. In: 29th IEEE international conference on tools with artificial intelligence (ICTAI), pp 374–381

  • Boella G, Kaci S, van der Torre LWN (2009a) Dynamics in argumentation with single extensions: attack refinement and the grounded extension (extended version). In: Proceedings of the international workshop on argumentation in multi-agent systems (ArgMAS), pp 150–159

  • Boella G, Kaci S, van der Torre LWN (2009b) Dynamics in argumentation with single extensions: abstraction principles and the grounded extension. In: Proceedings of the European conference on symbolic and quantitative approaches to reasoning with uncertainty (ECSQARU), pp 107–118

  • Caminada M (2006) Semi-stable semantics. In: Proceedings of the international conference on computational models of argument (COMMA), pp 121–130

  • Cayrol C, de Saint-Cyr FD, Lagasquie-Schiex M-C (2008) Revision of an argumentation system. In: Proceedings of the international conference on principles of knowledge represent and reasoning (KR), pp 124–134

  • Cayrol C, de Saint-Cyr FD, Lagasquie-Schiex M-C (2010) Change in abstract argumentation frameworks: adding an argument. J Artif Intell Res 38:49–84

    Article  Google Scholar 

  • Charwat G, Dvorák W, Gaggl SA, Wallner JP, Woltran S (2015) Methods for solving reasoning problems in abstract argumentation—a survey. Artif Intell 220:28–63

    Article  Google Scholar 

  • de Saint-Cyr FD, Bisquert P, Cayrol C, Lagasquie-Schiex M-C (2016) Argumentation update in YALLA (yet another logic language for argumentation). Int J Approx Reason 75:57–92

    Article  Google Scholar 

  • Doutre S, Herzig A, Perrussel L (2014) A dynamic logic framework for abstract argumentation. In: Proceedings of the fourteenth international conference of principles of knowledge representation and reasoning (KR)

  • Dung PM (1995) On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif Intell 77(2):321–358

    Article  Google Scholar 

  • Dung PM, Mancarella P, Toni F (2007) Computing ideal sceptical argumentation. Artif Intell 171(10–15):642–674

    Article  Google Scholar 

  • Dunne PE (2009) The computational complexity of ideal semantics. Artif Intell 173(18):1559–1591

    Article  Google Scholar 

  • Dunne PE, Wooldridge M (2009) Complexity of abstract argumentation. In: Argumentation in artificial intelligence, pp 85–104

  • Dvorák W, Woltran S (2010) Complexity of semi-stable and stage semantics in argumentation frameworks. Inf Process Lett 110(11):425–430

    Article  Google Scholar 

  • Dvorák W, Pichler R, Woltran S (2010) Towards fixed-parameter tractable algorithms for argumentation. In: Proceedings of the international conference on principles of knowledge representation and reasoning (KR)

  • Eiter T, Strass H, Truszczynski M, Woltran S (eds) (2015) Advances in knowledge representation, logic programming, and abstract argumentation, volume 9060 of lecture notes in computer science. Springer, Berlin

    Google Scholar 

  • Falappa MA, Garcia AJ, Kern-Isberner G, Simari GR (2011) On the evolving relation between belief revision and argumentation. Knowl Eng Rev 26(1):35–43

    Article  Google Scholar 

  • Fazzinga B, Flesca S, Parisi F (2015) On the complexity of probabilistic abstract argumentation frameworks. ACM Trans Comput Logic 16(3):22

    Article  Google Scholar 

  • Fazzinga B, Flesca S, Parisi F (2016) On efficiently estimating the probability of extensions in abstract argumentation frameworks. Int J Approx Reason 69:106–132

    Article  Google Scholar 

  • Greco S, Parisi F (2016a) Efficient computation of deterministic extensions for dynamic abstract argumentation frameworks. In: Proceedings of the European conference on artificial intelligence (ECAI), pp 1668–1669

  • Greco S, Parisi F (2016b) Incremental computation of deterministic extensions for dynamic argumentation frameworks. In: Proceedings of the European conference on logics in artificial intelligence (JELIA), pp 288–304

  • Greco S, Parisi F (2017) Incremental computation of grounded semantics for dynamic abstract argumentation frameworks. In: Second international workshop on conflict resolution in decision making (COREDEMA 2016), revised selected papers, pp 66–81

  • Kökciyan N, Yaglikci N, Yolum P (2017) An argumentation approach for resolving privacy disputes in online social networks. ACM Trans Internet Technol 17(3):27:1–27:22

    Article  Google Scholar 

  • Lagniez J-M, Lonca E, Mailly J-G (2015) CoQuiAAS: a constraint-based quick abstract argumentation solver. In: ICTAI, pp 928–935

  • Liao BS, Jin L, Koons RC (2011) Dynamics of argumentation systems: a division-based method. Artif Intell 175(11):1790–1814

    Article  Google Scholar 

  • Lifschitz V, Turner H (1994) Splitting a logic program. In: Proceedings of the international conference on logic programming (ICLP), pp 23–37

  • Modgil S, Prakken H (2011) Revisiting preferences and argumentation. In: Proceedings of the international joint conference on artificial intelligence (IJCAI), pp 1021–1026

  • Oikarinen E, Woltran S (2011) Characterizing strong equivalence for argumentation frameworks. Artif Intell 175(14–15):1985–2009

    Article  Google Scholar 

  • Parsons S, McBurney P (2003) Argumentation-based dialogues for agent co-ordination. Group Decis Negot 12(5):415–439

    Article  Google Scholar 

  • Pollock JL (1998) Perceiving and reasoning about a changing world. Comput Intell 14(4):498–562

    Article  Google Scholar 

  • Rahwan I, Simari GR (2009) Argumentation in artificial intelligence, 1st edn. Springer, Berlin

    Google Scholar 

  • Thimm M, Villata S (2017) The first international competition on computational models of argumentation: results and analysis. Artif Intell 252:267–294

    Article  Google Scholar 

  • Thimm M, Villata S, Cerutti F, Oren N, Strass H, Vallati M (2016) Summary report of the first international competition on computational models of argumentation. AI Mag 37(1):102

    Article  Google Scholar 

  • Xu Y, Cayrol C (2015) The matrix approach for abstract argumentation frameworks. In: Proceedings of the international workshop on theory and applications of formal argumentation (TAFA), pp 243–259

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Parisi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alfano, G., Greco, S. & Parisi, F. An Incremental Algorithm for Computing the Grounded Extension of Dynamic Abstract Argumentation Frameworks. Group Decis Negot 28, 935–960 (2019). https://doi.org/10.1007/s10726-019-09627-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10726-019-09627-4

Keywords

Navigation