Genetic Resources and Crop Evolution

, Volume 58, Issue 2, pp 271–282 | Cite as

Diversity analysis of Aegilops species from Morocco using RAPD markers

  • B. Belkadi
  • N. Assali
  • A. Filali-Maltouf
  • O. Benlhabib
Research Article


The diversity of 51 representative populations of the 5 Aegilops species from Moroccan collection was analyzed using 22 RAPD primers. We investigated the associations among these 5 Aegilops species (A. geniculata Roth (UUMM), A. triuncialis L. (UUCC), A. ventricosa Tausch (DDNN), A. peregrina (Hackel) Maire et Weiller (UUMM) and A. neglecta Req. ex Bert. subsp. recta (Zhuk.) K. Hammer (UUMMNN)); some diploid species considered as their ancestors; accessions of some neighboring countries and also accessions of Triticums. A total of 650 polymorphic RAPD fragments were amplified. A dendrogram was constructed using the un-weighed pair group method arithmetic average (UPGMA) and Jaccard`s similarity coefficient. The UPGMA clustering showed a regrouping to the level species with high level of the structuration of the diversity at A. geniculata. We confirm as reported by other authors, the proximity of N genome to U genome and C genome to M genome and also the difference between the genomes M and N. Thus, the phylogeny between the species and the different genomes were retracted.


Aegilops Diversity Morocco Phylogeny RAPD markers 



Amplified fragment length polymorphism


Institute of Agronomy and Veterinary


Random amplified polymorphic DNA


Restriction fragment length polymorphism


Simple sequence repeat



We are grateful to all the suppliers of seed (Table 1). We thank Mrs. F. Gabon for help with statistic analysis and Dr. Laila SBABOU with critical reading.


  1. Al-Humaid A, Motawei PI (2004) Molecular characterization of some turfgrass cultivars using randomly amplified polymorphic DNA (RAPD) markers. Food Agric Environ 2(1):376–380Google Scholar
  2. Badaeva ED (2002) Evaluation of phylogenetic relationships between five polyploidy Aegilops L. species of the U-genome cluster by means of chromosomal analysis. Genetika 38(6):799–811PubMedGoogle Scholar
  3. Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosomes of diploid species. Genome 39:293–306CrossRefPubMedGoogle Scholar
  4. Baum BR, Nevo E, Douglas A, Johnson A, Beiles A (1997) Genetic diversity in wild barley (Hordeum spontaneum C. Koch) in the Near East: a molecular analysis using random amplified polymorphic DNA (RAPD) markers. Genet Resour Crop Evol 44:147–157CrossRefGoogle Scholar
  5. Belkadi B, Assali N, Benlhabib O (2003) Variation of specific morphological traits and ploidy level of five Aegilops L. species in Morocco. Acta Botanica 28:47–58Google Scholar
  6. Benito C, Figueras AM, Gonsales-jaen MT (1987) Location of genes coding for isozyme markers on Ae. umbellulata chromosomes adds data on homoeology among Triticeae chromosomes. Theor Appl Genet 73:581–588CrossRefGoogle Scholar
  7. Benlhabib O, Diria G, Bouhssini M, Lhaloui S, Nachit M (2001) Collecting and evaluating Aegilops for germoplasm enhancement in Morocco. Actes IAV 21:3Google Scholar
  8. Boissier PE (1884) Flora Orientalis 5:2, Basel, GenevaGoogle Scholar
  9. Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet 32:314–331PubMedGoogle Scholar
  10. Bowden WL (1959) The taxonomy and nomenclature of the wheats, barleys and ryes and their wild relatives. Can J Bot 37:663 667-668, 670, 675-677Google Scholar
  11. Breiman A (1987) Mitochondrial DNA diversity in the genera of Triticum and Aegilops revealed by Southern blot hybridization. Theor Appl Genet 73:563–570CrossRefGoogle Scholar
  12. Cadwell KA, Kasarda DD (1978) Assessment of genomic and species relationships in Triticum and Aegilops by PAGE and by differential staining of seed albumins and globulins. Theor Appl Genet 52:273–280CrossRefGoogle Scholar
  13. Cao W, Scoles G, Hucl P, Chibbar RN (1999) The use of RAPD analysis to classify Triticum accessions. Theor Appl Genet 98:602–607CrossRefGoogle Scholar
  14. Castagna R, Maga G, Perenzin M, Heun M, Salamini F (1994) RFLP-based genetic relationships of Einkorn wheats. Theor Appl Genet 88:818–823CrossRefGoogle Scholar
  15. Castagna R, Gnocchi S, Perenzin M, Heum M (1997) Genetic variability of the wild wheat Triticum urartu revealed by RFLP and RAPD markers. Theor Appl Genet 94:424–430CrossRefGoogle Scholar
  16. Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5S and 18S–25S rDNA repetitive DNA sequences in Aegilops umbellulata. Genome 38:91–96PubMedGoogle Scholar
  17. Chennaveeraiah MS (1960) Karyomorphologic and cytotaxonomic studies in Aegilops. Acta hortigotoburgensis 23:85–178Google Scholar
  18. Dawson IK, Chalmers KJ, Waugh R, Powell W (1993) Detection and analysis of genetic variation in Hordeum spontaneum populations from Israel using RAPD markers. Mol Ecol 2:151–159CrossRefPubMedGoogle Scholar
  19. De Bustos A, Soler C, Jouve N (1999) Analysis by PCR-based markers using designed primers to study relationships between species of Hordeum (Poaceae). Genome 42:129–138CrossRefGoogle Scholar
  20. Devos KM, Gale MD (1992) The use of random amplified polymorphic DNA markers in wheat. Theor Appl Genet 84:567–572CrossRefGoogle Scholar
  21. Dewey DR (1984) The genome system of classification as a guide to hybridization with the perennial Triticeae. In: Gustafson JP (ed) Gene manipulation in plant improvement. Plenum publ. Crop., New York, pp 209–279Google Scholar
  22. Dos Santos JB, Nienhuis J, Skroch P, Tivang J, Slocum MK (1994) Comparison of RAPD and RFLP genetic markers in determining genetic similarity among Brassica oleracea L. genotypes. Theor Appl Genet 87:909–915Google Scholar
  23. Eig A (1929) Monographische-Kritische Übersicht der Gattung Aegilops, Feddes Repert. Reg Veget Beih Band Lv Berlin 55:1–228Google Scholar
  24. Fahima T, Sun GL, Beharav A, Krugman T, Beiles A, Nevo E (1999) RAPD polymorphism of wild emmer wheat populations, Triticum dicoccoides, in Israel. Theor Appl Genet 98:434–447CrossRefGoogle Scholar
  25. Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am (New York) 244(1):98–109Google Scholar
  26. Felsenstein J (1993) PHYLIP: PHYLogenetic Inference Package version 3.5c. Page web consultée en Décembre 2002,
  27. Friebe B, Mukai Y, Gill BS (1992) C-Banding polymorphisms in several accessions of Triticum tauschii (Aegilops squarrosa). Genome 35:192–199Google Scholar
  28. Goriunova SV, Kochieva EZ, Chikida NN, Pukhal’skii VA (2004) Phylogenetic relationships and intraspecific variation of D-genome Aegilops L. as revealed by RAPD analysis. Genetika 400(5):642–651Google Scholar
  29. Hammer K (1980) Zur Taxonomie und Nomenklatur der Gattung Aegilops L. Feddes Repert 91:225–258CrossRefGoogle Scholar
  30. Hart GE, Tuleen NA (1983) Characterizing and selecting alien genetic material of wheat alien species hybrids by analyses of isozyme variation. In: Sakamoto S (ed) Proceedings of the 6th international wheat genetics symposium, held at Kyoto, 28 November–3 December 1983. Plant Germ-plasm Institute, Kyoto University, Kyoto, pp 377–385Google Scholar
  31. Jaaska V (1987) Isoenzyme contribution to the systematics and phylogeny of the Triticeae crops and grasses. In: The plant cover of the Estonian SSR flora, vegetation and ecology. Tallinn, Valgus, pp 133–159Google Scholar
  32. Jaccard P (1908) Nouvelles recherches sur la distribution florale. Bull Soc Vaud Sci 44:223–270Google Scholar
  33. Jiang J, Gill BS (1994) New 18S–26S ribosomal RNA gene loci: chromosomal landmarks for the evolution of polyploidy wheats. Chromosoma 103:179–185CrossRefPubMedGoogle Scholar
  34. Joshi CP, Nguyen T (1993) RAPD (random amplified polymorphic DNA) analysis based intervarietal genetic relationships among hexaploid wheats. Plant Sci 93:95–103CrossRefGoogle Scholar
  35. Kazutoshi O, Kaoru E, Bayarsukh N, Hisashi Y (1998) Genetic diversity of Central Asian and north Caucasian Aegilops species as revealed by RAPD markers. Genet Resour Crop Evol 45(4):389–394CrossRefGoogle Scholar
  36. Khalighi M, Arzani A, Poursiahbidi MA (2008) Assessment of genetic diversity in Triticum spp. and Aegilops spp. using AFLP markers. Afr J Biotechnol 7(5):546–552Google Scholar
  37. Kihara H (1949) Genomanalyse bei Triticum und Aegilops IX. Systematischer Aufbau der Gattung Aegilops auf genomanalytischer Grundlage. Cytologia 14:135–144Google Scholar
  38. Kimber G, Feldman M (1987) Wild wheat, an introduction, special Report 353. University of Missouri, USAGoogle Scholar
  39. Kyoko Y, Taihachi K (2005) Intra- and interspecific phylogenetic relationships among diploid Triticum-Aegilops species (Poaceae) based on base-pair substitutions, indels, and microsatellites in chloroplast noncoding sequences. Am J Bot 92:1887–1898CrossRefGoogle Scholar
  40. Lagudah ES, Clarke BS, Appels R (1989) Phylogenetic relationships of Triticum tauschii, the D-genome donor to hexaploid wheat. 4. Variation and chromosomal location of 5S DNA. Genome 32:1017–1025PubMedGoogle Scholar
  41. Lilienfeld FA (1951) Concluding review. In: Kihara H (ed) Genome analysis in Triticum and Aegilops. X. Cytologia, vol 16, no 2, pp 115Google Scholar
  42. Loarce Y, Gallego R, Ferrer E (1996) A comparative analysis of the genetic relationships between rye cultivars using RFLP and RAPD markers. Euphytica 88:107–115CrossRefGoogle Scholar
  43. Lubbers EL, Gill KS, Cox TS, Gill BS (1991) Variation of molecular markers among geographically diverse accessions of Triticum tauschii. Genome 34:354–361Google Scholar
  44. Miyashita NT, Mori N, Tsunewaki K (1994) Molecular variation in chloroplast DNA regions in ancestral species of wheat. Genetics 137:883–889PubMedGoogle Scholar
  45. Monte JV, Casanova C, Soler C (1999) Genetic variation in Spanish populations of the genus Aegilops reveled by RAPD. Agronomie 19:419–427CrossRefGoogle Scholar
  46. Monte JV, De Nova PJ, Soler C (2001) AFLP-based analysis to study genetic variability and relationships in the Spanish species of the genus Aegilops. Hereditas 135(2–3):233–238PubMedGoogle Scholar
  47. Morris R, Sears ER (1967) The cytogenetics of wheat and its relatives. In: Quisenberry KS, Reitz LP (eds) Wheat and wheat improvement: 20–21 (table 1) 23, 87Google Scholar
  48. Murray M, Thompson WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucleic Acids Res 8:4321–4325CrossRefPubMedGoogle Scholar
  49. Nakai Y (1979) Isozyme variation in Aegilops and Triticum. IV. The origin of common wheat revealed from the study of esterase isozymes in synthesized hexaploid wheats. Jpn J Genet 54:175–189CrossRefGoogle Scholar
  50. Owuor ED, Fahima T, Beiles A, Korol A, Nevo E (1997) Population genetic response to microsite ecological stress in wild barley, Hordeum spontaneum. Mol Ecol 6:1177–1187CrossRefGoogle Scholar
  51. Petersen G, Seberg O, Yde M, Berthelsen K (2006) Phylogenetic relationships of Triticum and Aegilops and evidence for the origin of the A, B and D genomes of commun wheat (Triticum aestivum). Mol Phylogenet Evol 39(1):70–82CrossRefPubMedGoogle Scholar
  52. Provan J, Powell W, Hollingsworth PM (2001) Chloroplast microsatellites: new tools for studies in plant ecology and evolution. Trends Ecol Evol 16:142–147CrossRefPubMedGoogle Scholar
  53. Provan J, Wolters P, Caldwell KH, Powell W (2004) High resolution organellar genome analysis of Triticum and Aegilops sheds new light on cytoplasm evolution in wheat. Theor Appl Genet 108:1182–1190CrossRefPubMedGoogle Scholar
  54. Puterka GJ, Black IVWC, Steiner WM, Burton RL (1993) Genetic variation and phylogenetic relationships among world-wide collections of the Russian wheat aphid, Diuraphis noxia (Mordvilko), inferred from allozyme and RAPD-PCR markers. Heredity 70:604–618CrossRefPubMedGoogle Scholar
  55. Rayburn AL, Gill BS (1987) Molecular analysis of the D-genome of the Triticeae. Theor Appl Genet 73:385–388CrossRefGoogle Scholar
  56. Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphisms in barley: Mendelian inheritance, chromosome location and population dynamics. Proc Natl Acad Sci USA 81:8014–8018CrossRefPubMedGoogle Scholar
  57. Sakamoto S (1982) The Middle East as a cradle for crops and weeds. In: Holzner W, Numata W (eds) Biology and ecology of weeds, Chap 9. Kluwer, Boston, pp 97–109Google Scholar
  58. Sasanuma T, Chabane K, Endo TR, Valkoun J (2004) Characterization of genetic variation in and phylogenetic relationships among diploid Aegilops species by AFLP: incongruity of chloroplast and nuclear data. Theor Appl Genet 108:612–618CrossRefPubMedGoogle Scholar
  59. Schlüter PM, Harris SA (2006) Analysis of multilocus fingerprinting data sets containing missing data. Mol Ecol Notes 6:569–572CrossRefGoogle Scholar
  60. Schmidt J-C, Schubert V, Blüthner WD (1993) Use of isozymes to characterize Triticum aestivumAegilops markgrafii addition lines. Biochem Physiol Pflanzen 188:385–392Google Scholar
  61. Sneath PHA, Sokal RR (1973) Numerical taxonomy. The principles and practice of numerical classification. W.H. Freeman and company, San FranciscoGoogle Scholar
  62. Stebbins GL (1956) Taxonomy and the evolution of genera, with special reference to the family Gramineae. Evolution 10:235–247CrossRefGoogle Scholar
  63. Sun GL, Salomon B, Von Bothmer R (1997) Analysis of tetraploid Elymus species using wheat microsatellite markers and RAPD markers. Genome 40:806–814CrossRefPubMedGoogle Scholar
  64. Takashi RE, Yamamoto M, Mukai Y (1994) Structural changes of rye chromosome IR induced by a gametocidal chromosome. Jpn J Genet 69:13–19CrossRefGoogle Scholar
  65. Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acid Res 17:6463–6471CrossRefPubMedGoogle Scholar
  66. Tsujimoto H, Tsunewaki K (1985) Gametocidal genes in wheat and its relatives 2. Suppressor of the chromosome 3c gametocidal gene of Aegilops-Triuncialis. Can J Genet Cytol 27:178–185Google Scholar
  67. Tsunewaki K, Takumi S, Mori N, Achiwa T, Liu YG (1991) Origin of polyploid wheats revealed by RFLP analysis. In: Sasakuma T, Kinoshita T (eds) Nuclear and organellar genomes of wheat species. Kihara Memorial Foundation Yokohama, pp 33–39Google Scholar
  68. Tzvelev NN (1983) Tribe 3. Triticeae Dumort. In: Fedorow AA (ed) Grasses of the Soviet Union. I. Oxonian Press, New Delhi, pp 147–181Google Scholar
  69. Van Slageren MW (1990) The significance of taxonomic methods in handling genetic diversity. In: Srivastava JP, Damania AB (eds) Wheat genetic resources: meeting diverse needs. Wiley, ChichesterGoogle Scholar
  70. Van Slageren MW (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Agricultural University ICARDA, Wageningen 512 ppGoogle Scholar
  71. Vieira RF, Goldsbrough P, Simon JE (2003) Genetic diversity of basil (Ocimum spp.) based on RAPD markers. J Am Soc Hort Sci 128:94–99Google Scholar
  72. Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23(21):4407–4414CrossRefPubMedGoogle Scholar
  73. Wang ZY, Transkley SD (1989) Restriction fragment length polymorphism in Oryza sativa L. Genome 32:1113–1118Google Scholar
  74. Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV (1990) DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res 18:6531–6535CrossRefPubMedGoogle Scholar
  75. Witcombe JR (1983) A guide to the species of Aegilops L. Their taxonomy, morphology and distribution, IBPGR, Rome, Italy: i–vi, 1–74Google Scholar
  76. Zaharieva MN, David J, This D, Monneveux P (1999) Analyse de la diversité génétique d’Aegilops geniculata Roth en Bulgarie. Cahiers Agric 8:181–188Google Scholar
  77. Zaharieva MN, Santoni S, David J (2001) Use of RFLP markers to study genetic diversity and to build a core-collection of the wild wheat relative Ae. geniculata Roth (=Ae. ovata L.). Genet Sel Evol 33(suppl):S269–S288Google Scholar
  78. Zhang Q, Saghai Maroof MA, Lu TY, Shen BZ (1992) Genetic diversity and differentiation of indica and japonica rice detected by RFLP analysis. Theor Appl Genet 83:459–495Google Scholar
  79. Zhukovsky PM (1928) A critical-systematical survey of the species of the genus Aegilops L. Bull Appl Bot Genet Plant Breed 18:417–609Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2010

Authors and Affiliations

  • B. Belkadi
    • 1
  • N. Assali
    • 2
  • A. Filali-Maltouf
    • 1
  • O. Benlhabib
    • 2
  1. 1.Laboratory of Microbiology and Molecular Biology, Faculty of ScienceUniversity Mohamed VRabatMorocco
  2. 2.Cellular and Molecular Biotechnology Unit, Department of Ecology, Agronomy and Improvement of PlantsHassan II Institute of Agronomy and Veterinary (IAV)RabatMorocco

Personalised recommendations