Skip to main content
Log in

Cosmic acceleration in non-flat f(T) cosmology

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study f(T) cosmological models inserting a non-vanishing spatial curvature and discuss its consequences on cosmological dynamics. To figure this out, a polynomial f(T) model and a double torsion model are considered. We first analyze those models with cosmic data, employing the recent surveys of Union 2.1, baryonic acoustic oscillation and cosmic microwave background measurements. We then emphasize that the two popular f(T) models enable the crossing of the phantom divide line due to dark torsion. Afterwards, we compute numerical bounds up to 3-\(\sigma \) confidence level, emphasizing the fact that \(\Omega _{k0}\) turns out to be non-compatible with zero at least at 1\(\sigma \). Moreover, we underline that, even increasing the accuracy, one cannot remove the degeneracy between our models and the \(\Lambda \)CDM paradigm. So that, we show that our treatments contain the concordance paradigm and we analyze the equation of state behaviors at different redshift domains. We also take into account gamma ray bursts and we describe the evolution of both the f(T) models with high redshift data. We calibrate the gamma ray burst measurements through small redshift surveys of data and we thus compare the main differences between non-flat and flat f(T) cosmology at different redshift ranges. We finally match the corresponding outcomes with small redshift bounds provided by cosmography. To do so, we analyze the deceleration parameters and their variations, proportional to the jerk term. Even though the two models well fit late-time data, we notice that the polynomial f(T) approach provides an effective de-Sitter phase, whereas the second f(T) framework shows analogous results compared with the \(\Lambda \)CDM predictions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. The presence of matter and dark energy manifests a redshift at which dark energy starts dominating over matter, i.e. the transition redshift \(z_{tr}\).

  2. In the framework of metric formalism.

  3. For the sake of clearness, to avoid the a priori chosen cosmological model, one can calibrate on a model-independent local regression estimate of \(\mu (z)\) using Union supernova sample. This leads to a GRB Hubble diagram made out of 69 GRBs [42].

  4. Hereafter, Latin indexes refer to as the tangent space, whereas Greek indexes label as manifold coordinates.

  5. It is commonly accepted that viable alternatives to the cosmological constant \(\Lambda \) provide as a limiting case at \(z\simeq 0\), the concordance paradigm. In other words, it seems that the best models capable of describing the universe dynamics today are those which reduce to a constant dark energy term at small redshift domains.

  6. This case is excluded by recent observations.

  7. We assume T and \(T_0\) negative and p positive definite.

  8. The meaning of arbitrary new “redshift” variables has been introduced to overcome the convergence problem. It deals with the fact that most of cosmic data lie on redshift domains \(z\ge 1\), while Taylor expansions are built up at \(z\simeq 0\). Introducing \(y_i\) would statistically favors the cosmographic analyses, instead of using z only.

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Spergel, D.N., et al.: ApJS 148, 175 (2003)

    Article  ADS  Google Scholar 

  4. Spergel, D.N., et al.: ApJS 170, 377S (2007)

    Article  ADS  Google Scholar 

  5. Tegmark, M., et al.: Phys. Rev. D. 69, 103501 (2004)

    Article  ADS  Google Scholar 

  6. Eisenstein, D.J., et al.: Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  7. Nojiri, S., Odintsov, S.D.: Phys. Rep. 505, 59–144 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  8. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Phys. Rep. 692, 1 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Capozziello, S., De Laurentis, M.: Phys. Rep. 509, 167 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  10. Cai, Y.F., Capozziello, S., De Laurentis, M., Saridakis, E.N.: Rep. Prog. Phys. 79, 106901 (2016)

    Article  ADS  Google Scholar 

  11. Capozziello, S., Farooq, O., Luongo, O., Ratra, B.: Phys. Rev. D 90, 044016 (2014)

    Article  ADS  Google Scholar 

  12. Sahni, V., Starobinsky, A.A.: Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  13. Tsujikawa, S.: Dark energy: investigation and modeling. https://doi.org/10.1007/97890481868538. arXiv:1004.1493 [astro-ph] (2010)

  14. Caldwell, R.R., Dave, R., Steinhardt, R.J.: Phys. Rev. Lett. 80, 1582 (1998)

    Article  ADS  Google Scholar 

  15. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  16. Armendariz-Picon, C., Mukhanov, V., Steinhardt, P.J.: Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  17. Padmanabhan, T.: Phys. Rev. D 66, 021301 (2002)

    Article  ADS  Google Scholar 

  18. Sen, A.: Phys. Scr. T 117, 70 (2005)

    Article  ADS  Google Scholar 

  19. Feng, B., Wang, X.L., Zhang, X.M.: Phys. Lett. B 607, 35 (2005)

    Article  ADS  Google Scholar 

  20. Elizadle, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  21. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastiani, L., Zerbini, S.: Phys. Rev. D 77, 046009 (2008)

    Article  ADS  Google Scholar 

  22. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Zerbini, S.: Phys. Rev. D 73, 084007 (2006)

    Article  ADS  Google Scholar 

  23. Kamenshchik, A., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)

    Article  ADS  Google Scholar 

  24. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  25. Cohen, A.G., Kaplan, D.B., Nelson, A.E.: Phys. Rev. Lett. 82, 4971 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  26. Li, M.: Phys. Lett. B 603, 1 (2004)

    Article  ADS  Google Scholar 

  27. Wei, H., Cai, R.G.: Phys. Lett. B 663, 1 (2008)

    Article  ADS  Google Scholar 

  28. Wei, H., Cai, R.G.: Phys. Lett. B 660, 113 (2008)

    Article  ADS  Google Scholar 

  29. Gao, C., Wu, F., Chen, X., Shen, Y.G.: Phys. Rev. D 79, 043511 (2009)

    Article  ADS  Google Scholar 

  30. Felice, A.D., Tsujikawa, S.: Living Rev. Relativ. 13, 3 (2010)

    Article  ADS  Google Scholar 

  31. De Felice, A., Mota, D.F., Tsujikawa, S.: Phys. Rev. D 81, 023532 (2010)

    Article  ADS  Google Scholar 

  32. Farajollahi, H., Farhoudi, M., Shojaie, H.: Int. J. Theor. Phys. 49(10), 2558 (2010)

    Article  Google Scholar 

  33. Zuntz, J., Zlosnik, T.G., Bourliot, F., Ferreira, P.G., Starkman, G.D.: Phys. Rev. D 81, 104015 (2010)

    Article  ADS  Google Scholar 

  34. La Camera, M.: Mod. Phys. Lett. A 25, 781–792 (2010)

    Article  ADS  Google Scholar 

  35. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 68, 123512 (2003)

    Article  ADS  Google Scholar 

  36. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 74, 086005 (2006)

    Article  ADS  Google Scholar 

  37. Nojiri, S., Odintsov, S.D.: Int. J. Geom. Methods Mod. Phys. 4, 115–146 (2007)

    Article  MathSciNet  Google Scholar 

  38. Abdalla, M.C.B., Nojiri, S., Odintsov, S.D.: Class. Quantum Gravity 22, L35 (2005)

    Article  ADS  Google Scholar 

  39. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 77, 026007 (2008)

    Article  ADS  Google Scholar 

  40. Bengochea, G.R.: Phys. Lett. B 695, 405–411 (2011)

    Article  ADS  Google Scholar 

  41. Karami, K., Khaledian, M.S., Felegary, F., Azarmi, Z.: Phys. Lett. B 686, 216–220 (2010)

    Article  ADS  Google Scholar 

  42. Cardone, V.F., Capozziello, S., Dainotti, M.G.: Mon. Not. R. Astron. Soc. 400, 775–790 (2009)

    Article  ADS  Google Scholar 

  43. Einstein, A.: Sitz. Preuss. Akad. Wiss. p. 217; ibid p. 224 (1928)

  44. Hayashi, K., Shirafuji, T.: Phys. Rev. D. 19, 3524 (1979), Addendum-ibid. D. 24, 3312 (1982)

  45. Einstein, A.: Translations of Einstein papers by Unzicker, A., Case, T. arXiv:physics/0503046 (2005)

  46. Hoff da Silva, J.M., da Rocha, R.: Phys. Rev. D 81, 024021 (2010)

    Article  ADS  Google Scholar 

  47. Ferraro, R., Fiorini, F.: Phys. Rev. D 84, 083518 (2011)

    Article  ADS  Google Scholar 

  48. Wu, P., Yu, H.: Phys. Lett. B 703, 223–227 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  49. Capozziello, S., Cardone, V.F., Farajollahi, H., Ravanpak, A.: Phys. Rev. D 84, 043527 (2011)

    Article  ADS  Google Scholar 

  50. Miao, R.X., Li, M., Miao, Y.G.: JCAP 11, 033 (2011)

    Article  ADS  Google Scholar 

  51. Wei, H., Ma, X.P., Qi, H.Y.: Phys. Lett. B 703, 74–80 (2011)

    Article  ADS  Google Scholar 

  52. Sharif, M., Rani, S.: Mod. Phys. Lett. A 26, 1657–1671 (2011)

    Article  ADS  Google Scholar 

  53. Li, M., Miao, R.X., Miao, Y.G.: JHEP 1107, 108 (2011)

    Article  ADS  Google Scholar 

  54. Cai, Y.F., Chen, S.H., Dent, J.B., Dutta, S., Saridakis, E.N.: Class. Quantum Gravity 28, 215011 (2011)

    Article  ADS  Google Scholar 

  55. Li, B., Sotiriou, T.P., Barrow, J.D.: Phys. Rev. D 83, 104017 (2011)

    Article  ADS  Google Scholar 

  56. Ferraro, R., Fiorini, F.: Phys. Lett. B 702, 75–80 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  57. Zhang, Y., Li, H., Gong, Y., Zhu, Z.H.: JCAP 07, 015 (2011)

    Article  ADS  Google Scholar 

  58. Bamba, K., Geng, C.Q., Lee, C.C., Luo, L.W.: JCAP 1101, 021 (2011)

    Article  ADS  Google Scholar 

  59. Zheng, R., Huang, Q.G.: JCAP 1103, 002 (2011)

    Article  ADS  Google Scholar 

  60. Dent, J.B., Dutta, S., Saridakis, E.N.: JCAP 1101, 009 (2011)

    Article  ADS  Google Scholar 

  61. Bengochea, G.R.: Phys. Lett. B 695, 405–411 (2011)

    Article  ADS  Google Scholar 

  62. Ferraro, R., Fiorini, F.: Phys. Rev. D 78, 124019 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  63. Ulhoa, S.C., da Rocha Neto, J.F., Maluf, J.W.: Int. J. Mod. Phys. D 19(12), 1925–1935 (2010)

    Article  ADS  Google Scholar 

  64. Nashed, G.G.L.: Int. J. Mod. Phys. A 25(14), 2883–2895 (2010)

    Article  ADS  Google Scholar 

  65. Sharif, M., Taj, S.: Mod. Phys. Lett. A 25, 221–232 (2010)

    Article  ADS  Google Scholar 

  66. Lucas, T.G., Obukhov, Y.N., Pereira, J.G.: Phys. Rev. D 80, 064043 (2009)

    Article  ADS  Google Scholar 

  67. Ferraro, R., Fiorini, F.: Phys. Rev. D 75, 084031 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  68. Poplawski, N.J.: Phys. Lett. B 694, 181–185 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  69. Wu, P., Yu, H.: Eur. Phys. J. C 71, 1552 (2011)

    Article  ADS  Google Scholar 

  70. Wu, P., Yu, H.: Phys. Lett. B 693, 415–420 (2010)

    Article  ADS  Google Scholar 

  71. Linder, E.V.: Phys. Rev. D 80, 123528 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  72. Bamba, K., Geng, C.Q., Lee, C.C.: JCAP 08, 021 (2010)

    Article  ADS  Google Scholar 

  73. Ao, X.C., Li, X.Z., Xi, P.: Phys. Lett. B 694, 186–190 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  74. Bengochea, G.R.: Phys. Lett. B 695, 405 (2011)

    Article  ADS  Google Scholar 

  75. Bengochea, G., Ferraro, R.: Phys. Rev. D 79, 124019 (2009)

    Article  ADS  Google Scholar 

  76. Wu, P., Yu, H.: Phys. Lett. B 692, 176–179 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  77. Yang, R.J.: Eur. Phys. J. C 71, 1797 (2011)

    Article  ADS  Google Scholar 

  78. Huang, Q.G., Li, M.: J. Cosmol. Astropart. Phys. 08, 013 (2004)

    Article  ADS  Google Scholar 

  79. Schaefer, B.E.: Astrophys. J. 660, 16 (2007)

    Article  ADS  Google Scholar 

  80. Cardone, V.F., Capozziello, S., Dainotti, M.G.: Mon. Not. R. Astron. Soc. 400, 775–790 (2009)

    Article  ADS  Google Scholar 

  81. Ferraro, R., Fiorini, F.: IJMP (Conf. Ser.) 3, 227–237 (2011)

    Google Scholar 

  82. Amanullah, R., et al.: Astrophys. J. 716, 712–738 (2010)

    Article  ADS  Google Scholar 

  83. Reid, B.A.: Mon. Not. R. Astron. Soc. 404, 60–85 (2010)

    Article  ADS  Google Scholar 

  84. Percival, W.J., et al.: Mon. Not. R. Astron. Soc. 401, 2148–2168 (2010)

    Article  ADS  Google Scholar 

  85. Wang, Y., Mukherjee, P.: Astrophys. J. 650, 1 (2006)

    Article  ADS  Google Scholar 

  86. Bond, J.R., Efstathiou, G., Tegmark, M.: Mon. Not. R. Astron. Soc. 291, L33 (1997)

    ADS  Google Scholar 

  87. Komatsu, E., et al.: Astrophys. J. Suppl. 192, 18 (2011)

    Article  ADS  Google Scholar 

  88. Planck Collaboration.: P.A.R. Ade, Astron. Astrophys., 571, A22 (2014)

Download references

Acknowledgements

The work is partly supported by VEGA Grant No. 2/0009/16 and from COST Action CA15117 ”Cosmology and Astrophysics Network for Theoretical Advances and Training Actions” (CANTATA), supported by COST (European Cooperation in Science and Technology). S. Capozziello and O. Luongo are supported by Istituto Nazionale di Fisica Nucleare (INFN). R. Pincak would like to thank the TH division at CERN for hospitality.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orlando Luongo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Capozziello, S., Luongo, O., Pincak, R. et al. Cosmic acceleration in non-flat f(T) cosmology. Gen Relativ Gravit 50, 53 (2018). https://doi.org/10.1007/s10714-018-2374-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2374-4

Keywords

Navigation