Skip to main content
Log in

Physical quantities and spatial parameters in the complex octonion curved space

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The paper focuses on finding out several physical quantities to exert an influence on the spatial parameters of complex-octonion curved space, including the metric coefficient, connection coefficient, and curvature tensor. In the flat space described with the complex octonions, the radius vector is combined with the integrating function of field potential to become a composite radius vector. And the latter can be considered as the radius vector in a flat composite-space (a function space). Further it is able to deduce some formulae between the physical quantity and spatial parameter, in the complex-octonion curved composite-space. Under the condition of weak field approximation, these formulae infer a few results accordant with the general theory of relativity. The study reveals that it is capable of ascertaining which physical quantities are able to result in the warping of space, in terms of the curved composite-space described with the complex octonions. Moreover, the method may be expanded into some curved function spaces, seeking out more possible physical quantities to impact the bending degree of curved spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weng, Z.-H.: Angular momentum and torque described with the complex octonion. AIP Adv. 4, 087103 (2014). [Erratum: ibid. 5, 109901 (2015)]

    Article  ADS  Google Scholar 

  2. Oliveira, C.G., Maia, M.D.: Zorn algebra in general relativity. J. Math. Phys. 20, 923 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Tanisli, M., Kansu, M.E., Demir, S.: Reformulation of electromagnetic and gravito-electromagnetic equations for Lorentz system with octonion algebra. Gen. Relativ. Gravit. 46, 1739 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Castro, C.: On octonionic gravity, exceptional Jordan strings and nonassociative ternary gauge field theories. Int. J. Geom. Methods Mod. Phys. 9, 1250021 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ludkowski, S.V., Sprossig, W.: Spectral theory of super-differential operators of quaternion and octonion variables. Adv. Appl. Clifford Algebr. 21, 165 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  6. Pushpa, Bisht, P.S., Li, T., Negi, O.P.S.: Quaternion octonion reformulation of grand unified theories. Int. J. Theor. Phys. 51(10), 3228–3235 (2012). doi:10.1007/s10773-012-1204-9

  7. Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized octonion electrodynamics. Int. J. Theor. Phys. 49, 1333 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chanyal, B.C., Sharma, V.K., Negi, O.P.S.: Octonionic gravi-electromagnetism and dark matter. Int. J. Theor. Phys. 54, 3516 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Moffat, J.W.: Higher-dimensional Riemannian geometry and quaternion and octonion spaces. J. Math. Phys. 25, 347 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Edmonds, J.D.: Quaternion wave equations in curved space-time. Int. J. Theor. Phys. 10, 115 (1974)

    Article  MathSciNet  Google Scholar 

  11. Marques-Bonham, S.: The Dirac equation in a non-Riemannian manifold III: an analysis using the algebra of quaternions and octonions. J. Math. Phys. 32, 1383 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dundarer, A.R.: Multi-instanton solutions in eight-dimensional curved space. Mod. Phys. Lett. A 6, 409 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Tsagas, C.G.: Electromagnetic fields in curved spacetimes. Class. Quant. Grav. 22, 393 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Weng, Z.-H.: Dynamic of astrophysical jets in the complex octonion space. Int. J. Mod. Phys. D 24, 1550072 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Wei, J.-J., Wang, J.-S., Gao, H., Wu, X.-F.: Tests of the Einstein equivalence principle using TeV Blazars. Astrophys. J. Lett. 818, L2 (2016)

    Article  ADS  Google Scholar 

  16. Mohapi, N., Hees, A., Larena, J.: Test of the equivalence principle in the dark sector on galactic scales. J. Cosmol. Astropart. Phys. 2016, 032 (2016)

    Article  MathSciNet  Google Scholar 

  17. Han, F.-T., Wu, Q.-P., Zhou, Z.-B., Zhang, Y.-Z.: Proposed space test of the new equivalence principle with rotating extended bodies. Chin. Phys. Lett. 31, 110401 (2014)

    Article  ADS  Google Scholar 

  18. Reasenberg, R.D.: A new class of equivalence principle test masses, with application to SR-POEM. Classical Quant. Grav. 31, 175013 (2014)

    Article  ADS  MATH  Google Scholar 

  19. Haghi, H., Bazkiaei, A.E., Zonoozi, A.H., Kroupa, P.: Declining rotation curves of galaxies as a test of gravitational theory. MNRAS 458, 4172 (2016)

    Article  ADS  Google Scholar 

  20. Bousso, R.: Violations of the equivalence principle by a nonlocally reconstructed vacuum at the black hole horizon. Phys. Rev. Lett. 112, 041102 (2014)

    Article  ADS  Google Scholar 

  21. Overduin, J.M., Mitcham, J., Warecki, Z.: Expanded solar-system limits on violations of the equivalence principle. Class. Quant. Grav. 31, 015001 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Kahya, E.O., Desai, S.: Constraints on frequency-dependent violations of Shapiro delay from GW150914. Phys. Lett. B 756, 265 (2016)

    Article  ADS  Google Scholar 

  23. Hardy, E., Levy, A., Metris, G., Rodrigues, M., Touboul, P.: Determination of the equivalence principle violation signal for the MICROSCOPE space mission: optimization of the signal processing. Space Sci. Rev. 180, 177 (2016)

    Article  ADS  Google Scholar 

  24. Martins, C.J.A.P., Pinho, A.M.M., Alves, R.F.C., Pino, M., Rocha, C.I.S.A., von Wietersheim, M.: Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant. J. Cosmol. Astropart. Phys. 2015, 047 (2015)

    Article  Google Scholar 

  25. Ni, W.-T.: Equivalence principles, spacetime structure and the cosmic connection. Int. J. Mod. Phys. D 25, 1630002–448 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Freire, P.C.C., Kramer, M., Wex, N.: Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class. Quant. Grav. 29, 184007 (2012)

    Article  ADS  MATH  Google Scholar 

  27. Barrett, B., Antoni-Micollier, L., Chichet, L., Battelier, B., Gominet, P.-A., Bertoldi, A., Bouyer, P., Landragin, A.: Correlative methods for dual-species quantum tests of the weak equivalence principle. New J. Phys. 17, 085010 (2015)

    Article  ADS  Google Scholar 

  28. Bonnin, A., Zahzam, N., Bidel, Y., Bresson, A.: Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle. Phys. Rev. A 92, 023626 (2015)

    Article  ADS  Google Scholar 

  29. Donoghue, J.F., El-Menoufi, B.K.: QED trace anomaly, non-local Lagrangians and quantum equivalence principle violations. JHEP 2015, 118 (2015)

    Article  Google Scholar 

  30. Zhou, L., Long, S.-T., Tang, B., Chen, X., Gao, F., Peng, W.-C., Duan, W.-T., Zhong, J.-Q., Xiong, Z.-Y., Wang, J., Zhang, Y.-Z., Zhan, M.-S.: Test of equivalence principle at \(10^{-8}\) level by a dual-species double-diffraction raman atom interferometer. Phys. Rev. Lett. 115, 013004 (2015)

    Article  ADS  Google Scholar 

  31. Tarallo, M.G., Mazzoni, T., Poli, N., Sutyrin, D.V., Zhang, X., Tino, G.M.: Test of Einstein equivalence principle for 0-Spin and half-integer-spin atoms: search for spin-gravity coupling effects. Phys. Rev. Lett. 113, 023005 (2014)

    Article  ADS  Google Scholar 

  32. Hohensee, M.A., Leefer, N., Budker, D., Harabati, C., Dzuba, V.A., Flambaum, V.V.: Limits on violations of lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys. Rev. Lett. 111, 050401 (2013)

    Article  ADS  Google Scholar 

  33. Hernandez-Coronado, H., Okon, E.: Quantum equivalence principle without mass superselection. Phys. Lett. A 377, 2293 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Armendariz-Picon, C., Penco, R.: Quantum equivalence principle violations in scalar-tensor theories. Phys. Rev. D 85, 044052 (2012)

    Article  ADS  Google Scholar 

  35. Mousavi, S.V., Majumdar, A.S., Home, D.: Effect of quantum statistics on the gravitational weak equivalence principle. Class. Quant. Grav. 32, 215014 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Williams, J., Chiow, S.-W., Mueller, H., Yu, N.: Quantum test of the equivalence principle and space-time aboard the international space station. New J. Phys. 18, 025018 (2016)

    Article  ADS  Google Scholar 

  37. Altschul, B., Bailey, Q.G., Blanchet, L., Bongs, K., Bouyer, P., Cacciapuoti, L., Capozziello, S., Gaaloul, N., Giulini, D., Hartwig, J., Iess, L., Jetzer, P., Landragin, A., Rasel, E., Reynaud, S., Schiller, S., Schubert, C., Sorrentino, F., Sterr, U., Tasson, J.D., Tino, G.M., Tuckey, P., Wolf, P.: Quantum tests of the einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501 (2015)

    Article  ADS  Google Scholar 

  38. Licata, I., Corda, C., Benedetto, E.: A machian request for the equivalence principle in extended gravity and non-geodesic motion. Gravit. Cosmol. 22, 48 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Bjerrum-Bohr, N.E.J., Donoghue, J.F., El-Menoufi, B.K., Holstein, B.R., Plant, L., Vanhove, P.: The equivalence principle in a quantum world. Int. J. Mod. Phys. D 24, 1544013 (2015)

    Article  ADS  Google Scholar 

  40. Esmaili, A., Gratieri, D.R., Guzzo, M.M., de Holanda, P.C., Peres, O.L.G., Valdiviesso, G.A.: Constraining the violation of equivalence principle with ice cube atmospheric neutrino data. Phys. Rev. D 89, 113003 (2014)

    Article  ADS  Google Scholar 

  41. Pereira, S.T., Angelo, R.M.: Galilei covariance and Einstein’s equivalence principle in quantum reference frames. Phys. Rev. A 91, 022107 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  42. Gnatenko, KhP: Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377, 3061 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Ghosh, S.: Quantum gravity effects in geodesic motion and predictions of equivalence principle violation. Class. Quant. Grav. 31, 025025 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Di Casola, E., Liberati, S., Sonego, S.: Weak equivalence principle for self-gravitating bodies: a sieve for purely metric theories of gravity. Phys. Rev. D 89, 084053 (2014)

    Article  ADS  Google Scholar 

  45. Tkachuk, V.M.: Deformed Heisenberg algebra with minimal length and equivalence principle. Phys. Rev. A 86, 062112 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  46. Huber, F.M., Lewis, R.A., Messerschmid, E.W., Smith, G.A.: Precision tests of Einstein’s Weak equivalence principle for antimatter. Adv. Space Res. 25, 1245 (2000)

    Article  ADS  Google Scholar 

  47. Saha, A.: COW test of the weak equivalence principle: a low-energy window to look into the noncommutative structure of space-time? Phys. Rev. D 89, 025010 (2014)

    Article  ADS  Google Scholar 

  48. Unnikrishnan, C.S., Gillies, G.T.: Is the Higgs mechanism true to the equivalence principle? Int. J. Mod. Phys. D 24, 1544009 (2015)

    Article  ADS  MATH  Google Scholar 

  49. Lambiase, G.: Neutrino oscillations in non-inertial frames and the violation of the equivalence principle Neutrino mixing induced by the equivalence principle violation. EPJ C 19, 553 (2001)

    ADS  Google Scholar 

  50. Damour, T.: Theoretical aspects of the equivalence principle. Class. Quant. Grav. 29, 184001 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Weng, Z.-H.: Forces in the complex octonion curved space. Int. J. Geom. Methods Mod. Phys. 13, 1650076 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author is indebted to the anonymous referees for their constructive comments on the previous manuscript. This Project was supported partially by the National Natural Science Foundation of China under Grant Number 60677039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Hua Weng.

Appendices

Appendix 1: Connection coefficient

In the curved space described with the complex octonions, there is a relation between the metric coefficient and connection coefficient. The definition of metric coefficient must meet the demand of this relation, deducing the connection coefficient from the metric coefficient.

Multiplying the component \({{\varvec{e}}}_\lambda ^*\) from the left of the definition,

$$\begin{aligned} \partial ^2 \mathbb {H} / \partial u^\beta \partial u^{\gamma } = \varGamma _{\beta \gamma }^\alpha {{\varvec{e}}}_\alpha , \end{aligned}$$
(43)

yields,

$$\begin{aligned} ( \partial \mathbb {H}^*/ \partial u^\lambda ) \circ ( \partial ^2 \mathbb {H} / \partial u^\beta \partial u^{\gamma } ) = g_{\overline{\lambda } \alpha } \varGamma _{\beta \gamma }^\alpha , \end{aligned}$$
(44)

while multiplying the component \({{\varvec{e}}}_\lambda \) from the right of the conjugate of Eq. (43) produces,

$$\begin{aligned} ( \partial ^2 \mathbb {H}^*/ \partial u^\beta \partial u^{\gamma } ) \circ ( \partial \mathbb {H} / \partial u^\lambda ) = \overline{\varGamma _{\beta \gamma }^\alpha } g_{\overline{\alpha } \lambda }, \end{aligned}$$
(45)

where \(\partial ^2 \mathbb {H}^*/ \partial u^\beta \partial u^{\gamma } = \overline{\varGamma _{\beta \gamma }^\alpha } {{\varvec{e}}}_\alpha ^*\). \(\varGamma _{\beta \gamma }^\alpha \) and \(\overline{\varGamma _{\beta \gamma }^\alpha }\) are coefficients.

From the last two equations, the partial derivative of the metric tensor, \(g_{\overline{\lambda } \gamma } = {{\varvec{e}}}_\lambda ^*\circ {{\varvec{e}}}_\gamma \), with respect to the coordinate value \(u^\beta \) generates,

$$\begin{aligned} g_{\overline{\lambda } \alpha } \varGamma _{\beta \gamma }^\alpha + \overline{\varGamma _{\beta \lambda }^\alpha } g_{\overline{\alpha } \gamma } = \partial g_{\overline{\lambda } \gamma } / \partial u^\beta , \end{aligned}$$
(46)

similarly there are,

$$\begin{aligned} g_{\overline{\beta } \alpha } \varGamma _{\gamma \lambda }^\alpha + \overline{\varGamma _{\gamma \beta }^\alpha } g_{\overline{\alpha } \lambda }= & {} \partial g_{\overline{\beta } \lambda } / \partial u^{\gamma }, \end{aligned}$$
(47)
$$\begin{aligned} g_{\overline{\gamma } \alpha } \varGamma _{\lambda \beta }^\alpha + \overline{\varGamma _{\lambda \gamma }^\alpha } g_{\overline{\alpha } \beta }= & {} \partial g_{\overline{\gamma } \beta } / \partial u^\lambda . \end{aligned}$$
(48)

From the last three equations, there are,

$$\begin{aligned} \varGamma _{ \overline{\lambda } , \beta \gamma } = (1/2) ( \partial g_{ \overline{\gamma } \lambda } / \partial u^\beta + \partial g_{ \overline{\lambda } \beta } / \partial u^{\gamma } - \partial g_{ \overline{\gamma } \beta } / \partial u^\lambda ), \end{aligned}$$
(49)

where \( [ ( g_{\overline{\lambda } \alpha } \varGamma _{\beta \gamma }^\alpha )^*]^T = \overline{\varGamma _{\gamma \beta }^\alpha } g_{\overline{\alpha } \lambda } \), and \( [ ( \overline{\varGamma _{\gamma \beta }^\alpha } g_{\overline{\alpha } \lambda } )^*]^T = g_{\overline{\lambda } \alpha } \varGamma _{\beta \gamma }^\alpha \).

On the other hand, multiplying the component \({{\varvec{e}}}_\lambda ^*\) from the left of the definition,

$$\begin{aligned} \partial ^2 \mathbb {H} / \partial \overline{u^\beta } \partial u^{\gamma } = \varGamma _{\overline{\beta } \gamma }^\alpha {{\varvec{e}}}_\alpha , \end{aligned}$$
(50)

deduces,

$$\begin{aligned} ( \partial \mathbb {H}^*/ \partial u^\lambda ) \circ ( \partial ^2 \mathbb {H} / \partial \overline{u^\beta } \partial u^{\gamma } ) = g_{\overline{\lambda } \alpha } \varGamma _{\overline{\beta } \gamma }^\alpha , \end{aligned}$$
(51)

while multiplying the component \({{\varvec{e}}}_\lambda \) from the right of the conjugate of Eq. (50) produces,

$$\begin{aligned} ( \partial ^2 \mathbb {H}^*/ \partial \overline{u^\beta } \partial u^{\gamma } ) \circ ( \partial \mathbb {H} / \partial u^\lambda ) = \overline{\varGamma _{\overline{\beta } \gamma }^\alpha } g_{\overline{\alpha } \lambda }, \end{aligned}$$
(52)

where \(\partial ^2 \mathbb {H}^*/ \partial \overline{u^\beta } \partial u^{\gamma } = \overline{\varGamma _{\overline{\beta } \gamma }^\alpha } {{\varvec{e}}}_\alpha ^*\). \(\varGamma _{\overline{\beta } \gamma }^\alpha \) and \(\overline{\varGamma _{\overline{\beta } \gamma }^\alpha }\) are coefficients.

By means of the last two equations, the partial derivative of the metric tensor, \(g_{\overline{\lambda } \gamma } = {{\varvec{e}}}_\lambda ^*\circ {{\varvec{e}}}_\gamma \), with respect to the coordinate value \(\overline{u^\beta }\) generates,

$$\begin{aligned} g_{\overline{\lambda } \alpha } \varGamma _{\overline{\beta } \gamma }^\alpha + \overline{\varGamma _{\overline{\beta } \lambda }^\alpha } g_{\overline{\alpha } \gamma } = \partial g_{\overline{\lambda } \gamma } / \partial \overline{u^\beta }, \end{aligned}$$
(53)

similarly there are,

$$\begin{aligned} g_{\overline{\beta } \alpha } \varGamma _{\overline{\gamma } \lambda }^\alpha + \overline{\varGamma _{\overline{\gamma } \beta }^\alpha } g_{\overline{\alpha } \lambda }= & {} \partial g_{\overline{\beta } \lambda } / \partial \overline{u^{\gamma }}, \end{aligned}$$
(54)
$$\begin{aligned} g_{\overline{\gamma } \alpha } \varGamma _{\overline{\lambda } \beta }^\alpha + \overline{\varGamma _{\overline{\lambda } \gamma }^\alpha } g_{\overline{\alpha } \beta }= & {} \partial g_{\overline{\gamma } \beta } / \partial \overline{u^\lambda }. \end{aligned}$$
(55)

From the last three equations, there exist,

$$\begin{aligned} \varGamma _{ \overline{\lambda } , \overline{\beta } \gamma } = (1/2) ( \partial g_{ \overline{\gamma } \lambda } / \partial \overline{u^\beta } + \partial g_{ \overline{\lambda } \beta } / \partial \overline{u^{\gamma }} - \partial g_{ \overline{\gamma } \beta } / \partial \overline{u^\lambda } ), \end{aligned}$$
(56)

where \( [ ( g_{\overline{\lambda } \alpha } \varGamma _{\overline{\beta } \gamma }^\alpha )^*]^T = \overline{\varGamma _{\overline{\gamma } \beta }^\alpha } g_{\overline{\alpha } \lambda } \), and \( [ ( \overline{\varGamma _{\overline{\gamma } \beta }^\alpha } g_{\overline{\alpha } \lambda } )^*]^T = g_{\overline{\lambda } \alpha } \varGamma _{\overline{\beta } \gamma }^\alpha \).

Appendix 2: Curvature tensor

In the curved space described with the complex octonions, for a tensor \(Y^{\gamma }\) with contravariant rank 1, the covariant derivative is,

$$\begin{aligned} \nabla _\beta Y^{\gamma } = \partial Y^{\gamma } / \partial u^\beta + \varGamma _{\lambda \beta }^{\gamma } Y^\lambda , ~~~~~ \nabla _{\overline{\alpha }} Y^{\gamma } = \partial Y^{\gamma } / \partial \overline{u^\alpha } + \varGamma _{\lambda \overline{\alpha }}^{\gamma } Y^\lambda , \end{aligned}$$
(57)

meanwhile, for a mixed tensor, \(Z_\nu ^{\gamma }\), with contravariant rank 1 and covariant rank 1, the covariant derivative can be written as,

$$\begin{aligned} \nabla _\beta Z_\nu ^{\gamma }= & {} \partial Z_\nu ^{\gamma } / \partial u^\beta - \varGamma _{\beta \nu }^\lambda Z_\lambda ^{\gamma } + \varGamma _{\beta \lambda }^{\gamma } Z_\nu ^\lambda , \end{aligned}$$
(58)
$$\begin{aligned} \nabla _{\overline{\alpha }} Z_\nu ^{\gamma }= & {} \partial Z_\nu ^{\gamma } / \partial \overline{u^\alpha } - \varGamma _{\overline{\alpha } \nu }^\lambda Z_\lambda ^{\gamma } + \varGamma _{\overline{\alpha } \lambda }^{\gamma } Z_\nu ^\lambda , \end{aligned}$$
(59)

where \(Y^{\gamma }\) and \(Z_\nu ^{\gamma }\) both are scalar.

Apparently, the above equations deduce,

$$\begin{aligned} \nabla _{\overline{\alpha }} ( \nabla _\beta Y^{\gamma } ) = \partial ( \nabla _\beta Y^{\gamma } ) / \partial \overline{u^\alpha } - \varGamma _{\beta \overline{\alpha } }^\lambda ( \nabla _\lambda Y^{\gamma } ) + \varGamma _{\lambda \overline{\alpha } }^{\gamma } ( \nabla _\beta Y^\lambda ), \end{aligned}$$
(60)

similarly there is,

$$\begin{aligned} \nabla _\beta ( \nabla _{\overline{\alpha }} Y^{\gamma } ) = \partial ( \nabla _{\overline{\alpha }} Y^{\gamma } ) / \partial u^\beta - \varGamma _{\overline{\alpha } \beta }^\lambda ( \nabla _\lambda Y^{\gamma } ) + \varGamma _{\lambda \beta }^{\gamma } ( \nabla _{\overline{\alpha }} Y^\lambda ). \end{aligned}$$
(61)

As a result, making a subtraction in last two equations yields,

$$\begin{aligned}&\nabla _{\overline{\alpha }} ( \nabla _\beta Y^{\gamma } ) - \nabla _\beta ( \nabla _{\overline{\alpha }} Y^{\gamma } ) \nonumber \\&\quad = \left\{ \partial \varGamma _{\nu \beta }^{\gamma } / \partial \overline{u^\alpha } + \varGamma _{\lambda \overline{\alpha }}^{\gamma } \varGamma _{\nu \beta }^\lambda - \partial \varGamma _{\nu \overline{\alpha }}^{\gamma } /\partial u^\beta - \varGamma _{\lambda \beta }^{\gamma } \varGamma _{\nu \overline{\alpha }}^\lambda \right\} Y^\nu + T_{\beta \overline{\alpha }}^\lambda (\nabla _\lambda Y^{\gamma }), \end{aligned}$$
(62)

where \( \partial ( \partial Y^{\gamma } / \partial \overline{u^\alpha } ) / \partial u^\beta - \partial ( \partial Y^{\gamma } / \partial u^\beta ) / \partial \overline{u^\alpha } = 0 \). The torsion tensor is, \( T_{\beta \overline{\alpha }}^\lambda = \varGamma _{\overline{\alpha } \beta }^\lambda - \varGamma _{\beta \overline{\alpha }}^\lambda \).

In the case there is, \( T_{\beta \overline{\alpha }}^\lambda = 0 \), the above can be reduced to,

$$\begin{aligned} \nabla _{\overline{\alpha }} ( \nabla _\beta Y^{\gamma } ) - \nabla _\beta ( \nabla _{\overline{\alpha }} Y^{\gamma } ) = R_{\beta \overline{\alpha } \nu }^{~~~~~~\gamma } Y^\nu , \end{aligned}$$
(63)

where the curvature tensor is, \( R_{\beta \overline{\alpha } \nu }^{~~~~~~\gamma } = \partial \varGamma _{\nu \beta }^{\gamma } / \partial \overline{u^\alpha } - \partial \varGamma _{\nu \overline{\alpha }}^{\gamma } /\partial u^\beta + \varGamma _{\lambda \overline{\alpha }}^{\gamma } \varGamma _{\nu \beta }^\lambda - \varGamma _{\lambda \beta }^{\gamma } \varGamma _{\nu \overline{\alpha }}^\lambda \).

Appendix 3: Tangent space

In the curved spaces described with the complex octonions, there are some particular situations, in which the tangent spaces are different from the underlying spaces. They include but not limited to the following cases:

(1) The underlying space is the complex octonion space \(\mathbb {O}\), while some tangent spaces respectively relate with the complex-octonion radius vector \(\mathbb {H}\), composite radius vector \(\mathbb {U}\), and angular momentum \(\mathbb {L}\) and so forth. Therefore their components of tangent frames are respectively the partial derivatives of the complex-octonion radius vector, composite radius vector, and angular momentum and so on, with respect to the coordinate value \(u^\alpha \) of complex-octonion radius vector.

(2) The underlying space is the complex-octonion composite space \(\mathbb {O}_U\), while several tangent spaces are respectively relevant to the complex-octonion composite radius vector, angular momentum, and torque \(\mathbb {W}\) and so forth. Accordingly their components of tangent frames are respectively the partial derivatives of the complex-octonion composite radius vector, angular momentum, and torque and so on, with respect to the coordinate value \(U^\alpha \) of complex-octonion composite radius vector.

(3) The underlying space is the complex-octonion angular momentum space \(\mathbb {O}_L\), while a part of tangent spaces are respectively involved with the complex-octonion angular momentum, torque, force \(\mathbb {N}\) and so forth. Consequently their components of tangent frames are respectively the partial derivatives of the complex-octonion angular momentum, torque, and force and so on, with respect to the component \(L^\alpha \) of complex-octonion angular momentum.

Apparently, in these curved spaces, there are some special cases, that is, the metric coefficient is a dimensionless parameter, and able to be approximately degenerated into, \(g_{\overline{\alpha } \beta } \approx 1 + h_{\alpha \beta } \). For example, (a) The underlying space and tangent space both are the complex octonion space \(\mathbb {O}\). (b) The underlying space and tangent space both are the complex-octonion composite space \(\mathbb {O}_U\). (c) The underlying space and tangent space both are the complex-octonion angular momentum space \(\mathbb {O}_L\). (d) The underlying space is the complex octonion space \(\mathbb {O}\), while the tangent space is the complex-octonion composite space \(\mathbb {O}_U\).

For the majority of the curved spaces described with the complex octonions, it may cause the metric coefficient to be seized of one certain dimension in the physics. As a result, they are incapable of deducing some equations to meet the requirement of the academic thought, that is, the existence of field will dominate the bending of space. The weak approximate method may be not suitable to these curved spaces, and even it may be hard to comprehend a few physical meanings may be in these curved spaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, ZH. Physical quantities and spatial parameters in the complex octonion curved space. Gen Relativ Gravit 48, 153 (2016). https://doi.org/10.1007/s10714-016-2148-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-016-2148-9

Keywords

Mathematics Subject Classification

Navigation