Physical quantities and spatial parameters in the complex octonion curved space

Research Article


The paper focuses on finding out several physical quantities to exert an influence on the spatial parameters of complex-octonion curved space, including the metric coefficient, connection coefficient, and curvature tensor. In the flat space described with the complex octonions, the radius vector is combined with the integrating function of field potential to become a composite radius vector. And the latter can be considered as the radius vector in a flat composite-space (a function space). Further it is able to deduce some formulae between the physical quantity and spatial parameter, in the complex-octonion curved composite-space. Under the condition of weak field approximation, these formulae infer a few results accordant with the general theory of relativity. The study reveals that it is capable of ascertaining which physical quantities are able to result in the warping of space, in terms of the curved composite-space described with the complex octonions. Moreover, the method may be expanded into some curved function spaces, seeking out more possible physical quantities to impact the bending degree of curved spaces.


Curved space Metric coefficient Curvature tensor Octonion 

Mathematics Subject Classification

17A35 46L87 70G45 83E15 



The author is indebted to the anonymous referees for their constructive comments on the previous manuscript. This Project was supported partially by the National Natural Science Foundation of China under Grant Number 60677039.


  1. 1.
    Weng, Z.-H.: Angular momentum and torque described with the complex octonion. AIP Adv. 4, 087103 (2014). [Erratum: ibid. 5, 109901 (2015)]ADSCrossRefGoogle Scholar
  2. 2.
    Oliveira, C.G., Maia, M.D.: Zorn algebra in general relativity. J. Math. Phys. 20, 923 (1979)ADSMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Tanisli, M., Kansu, M.E., Demir, S.: Reformulation of electromagnetic and gravito-electromagnetic equations for Lorentz system with octonion algebra. Gen. Relativ. Gravit. 46, 1739 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Castro, C.: On octonionic gravity, exceptional Jordan strings and nonassociative ternary gauge field theories. Int. J. Geom. Methods Mod. Phys. 9, 1250021 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Ludkowski, S.V., Sprossig, W.: Spectral theory of super-differential operators of quaternion and octonion variables. Adv. Appl. Clifford Algebr. 21, 165 (2011)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Pushpa, Bisht, P.S., Li, T., Negi, O.P.S.: Quaternion octonion reformulation of grand unified theories. Int. J. Theor. Phys. 51(10), 3228–3235 (2012). doi: 10.1007/s10773-012-1204-9
  7. 7.
    Chanyal, B.C., Bisht, P.S., Negi, O.P.S.: Generalized octonion electrodynamics. Int. J. Theor. Phys. 49, 1333 (2010)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Chanyal, B.C., Sharma, V.K., Negi, O.P.S.: Octonionic gravi-electromagnetism and dark matter. Int. J. Theor. Phys. 54, 3516 (2015)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Moffat, J.W.: Higher-dimensional Riemannian geometry and quaternion and octonion spaces. J. Math. Phys. 25, 347 (1984)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Edmonds, J.D.: Quaternion wave equations in curved space-time. Int. J. Theor. Phys. 10, 115 (1974)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Marques-Bonham, S.: The Dirac equation in a non-Riemannian manifold III: an analysis using the algebra of quaternions and octonions. J. Math. Phys. 32, 1383 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Dundarer, A.R.: Multi-instanton solutions in eight-dimensional curved space. Mod. Phys. Lett. A 6, 409 (1991)ADSMathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Tsagas, C.G.: Electromagnetic fields in curved spacetimes. Class. Quant. Grav. 22, 393 (2005)ADSMathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Weng, Z.-H.: Dynamic of astrophysical jets in the complex octonion space. Int. J. Mod. Phys. D 24, 1550072 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Wei, J.-J., Wang, J.-S., Gao, H., Wu, X.-F.: Tests of the Einstein equivalence principle using TeV Blazars. Astrophys. J. Lett. 818, L2 (2016)ADSCrossRefGoogle Scholar
  16. 16.
    Mohapi, N., Hees, A., Larena, J.: Test of the equivalence principle in the dark sector on galactic scales. J. Cosmol. Astropart. Phys. 2016, 032 (2016)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Han, F.-T., Wu, Q.-P., Zhou, Z.-B., Zhang, Y.-Z.: Proposed space test of the new equivalence principle with rotating extended bodies. Chin. Phys. Lett. 31, 110401 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    Reasenberg, R.D.: A new class of equivalence principle test masses, with application to SR-POEM. Classical Quant. Grav. 31, 175013 (2014)ADSCrossRefMATHGoogle Scholar
  19. 19.
    Haghi, H., Bazkiaei, A.E., Zonoozi, A.H., Kroupa, P.: Declining rotation curves of galaxies as a test of gravitational theory. MNRAS 458, 4172 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    Bousso, R.: Violations of the equivalence principle by a nonlocally reconstructed vacuum at the black hole horizon. Phys. Rev. Lett. 112, 041102 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    Overduin, J.M., Mitcham, J., Warecki, Z.: Expanded solar-system limits on violations of the equivalence principle. Class. Quant. Grav. 31, 015001 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Kahya, E.O., Desai, S.: Constraints on frequency-dependent violations of Shapiro delay from GW150914. Phys. Lett. B 756, 265 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    Hardy, E., Levy, A., Metris, G., Rodrigues, M., Touboul, P.: Determination of the equivalence principle violation signal for the MICROSCOPE space mission: optimization of the signal processing. Space Sci. Rev. 180, 177 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    Martins, C.J.A.P., Pinho, A.M.M., Alves, R.F.C., Pino, M., Rocha, C.I.S.A., von Wietersheim, M.: Dark energy and equivalence principle constraints from astrophysical tests of the stability of the fine-structure constant. J. Cosmol. Astropart. Phys. 2015, 047 (2015)CrossRefGoogle Scholar
  25. 25.
    Ni, W.-T.: Equivalence principles, spacetime structure and the cosmic connection. Int. J. Mod. Phys. D 25, 1630002–448 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Freire, P.C.C., Kramer, M., Wex, N.: Tests of the universality of free fall for strongly self-gravitating bodies with radio pulsars. Class. Quant. Grav. 29, 184007 (2012)ADSCrossRefMATHGoogle Scholar
  27. 27.
    Barrett, B., Antoni-Micollier, L., Chichet, L., Battelier, B., Gominet, P.-A., Bertoldi, A., Bouyer, P., Landragin, A.: Correlative methods for dual-species quantum tests of the weak equivalence principle. New J. Phys. 17, 085010 (2015)ADSCrossRefGoogle Scholar
  28. 28.
    Bonnin, A., Zahzam, N., Bidel, Y., Bresson, A.: Characterization of a simultaneous dual-species atom interferometer for a quantum test of the weak equivalence principle. Phys. Rev. A 92, 023626 (2015)ADSCrossRefGoogle Scholar
  29. 29.
    Donoghue, J.F., El-Menoufi, B.K.: QED trace anomaly, non-local Lagrangians and quantum equivalence principle violations. JHEP 2015, 118 (2015)CrossRefGoogle Scholar
  30. 30.
    Zhou, L., Long, S.-T., Tang, B., Chen, X., Gao, F., Peng, W.-C., Duan, W.-T., Zhong, J.-Q., Xiong, Z.-Y., Wang, J., Zhang, Y.-Z., Zhan, M.-S.: Test of equivalence principle at \(10^{-8}\) level by a dual-species double-diffraction raman atom interferometer. Phys. Rev. Lett. 115, 013004 (2015)ADSCrossRefGoogle Scholar
  31. 31.
    Tarallo, M.G., Mazzoni, T., Poli, N., Sutyrin, D.V., Zhang, X., Tino, G.M.: Test of Einstein equivalence principle for 0-Spin and half-integer-spin atoms: search for spin-gravity coupling effects. Phys. Rev. Lett. 113, 023005 (2014)ADSCrossRefGoogle Scholar
  32. 32.
    Hohensee, M.A., Leefer, N., Budker, D., Harabati, C., Dzuba, V.A., Flambaum, V.V.: Limits on violations of lorentz symmetry and the Einstein equivalence principle using radio-frequency spectroscopy of atomic dysprosium. Phys. Rev. Lett. 111, 050401 (2013)ADSCrossRefGoogle Scholar
  33. 33.
    Hernandez-Coronado, H., Okon, E.: Quantum equivalence principle without mass superselection. Phys. Lett. A 377, 2293 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Armendariz-Picon, C., Penco, R.: Quantum equivalence principle violations in scalar-tensor theories. Phys. Rev. D 85, 044052 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    Mousavi, S.V., Majumdar, A.S., Home, D.: Effect of quantum statistics on the gravitational weak equivalence principle. Class. Quant. Grav. 32, 215014 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Williams, J., Chiow, S.-W., Mueller, H., Yu, N.: Quantum test of the equivalence principle and space-time aboard the international space station. New J. Phys. 18, 025018 (2016)ADSCrossRefGoogle Scholar
  37. 37.
    Altschul, B., Bailey, Q.G., Blanchet, L., Bongs, K., Bouyer, P., Cacciapuoti, L., Capozziello, S., Gaaloul, N., Giulini, D., Hartwig, J., Iess, L., Jetzer, P., Landragin, A., Rasel, E., Reynaud, S., Schiller, S., Schubert, C., Sorrentino, F., Sterr, U., Tasson, J.D., Tino, G.M., Tuckey, P., Wolf, P.: Quantum tests of the einstein equivalence principle with the STE-QUEST space mission. Adv. Space Res. 55, 501 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Licata, I., Corda, C., Benedetto, E.: A machian request for the equivalence principle in extended gravity and non-geodesic motion. Gravit. Cosmol. 22, 48 (2016)ADSMathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Bjerrum-Bohr, N.E.J., Donoghue, J.F., El-Menoufi, B.K., Holstein, B.R., Plant, L., Vanhove, P.: The equivalence principle in a quantum world. Int. J. Mod. Phys. D 24, 1544013 (2015)ADSCrossRefGoogle Scholar
  40. 40.
    Esmaili, A., Gratieri, D.R., Guzzo, M.M., de Holanda, P.C., Peres, O.L.G., Valdiviesso, G.A.: Constraining the violation of equivalence principle with ice cube atmospheric neutrino data. Phys. Rev. D 89, 113003 (2014)ADSCrossRefGoogle Scholar
  41. 41.
    Pereira, S.T., Angelo, R.M.: Galilei covariance and Einstein’s equivalence principle in quantum reference frames. Phys. Rev. A 91, 022107 (2015)ADSMathSciNetCrossRefGoogle Scholar
  42. 42.
    Gnatenko, KhP: Composite system in noncommutative space and the equivalence principle. Phys. Lett. A 377, 3061 (2013)ADSMathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Ghosh, S.: Quantum gravity effects in geodesic motion and predictions of equivalence principle violation. Class. Quant. Grav. 31, 025025 (2014)ADSMathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Di Casola, E., Liberati, S., Sonego, S.: Weak equivalence principle for self-gravitating bodies: a sieve for purely metric theories of gravity. Phys. Rev. D 89, 084053 (2014)ADSCrossRefGoogle Scholar
  45. 45.
    Tkachuk, V.M.: Deformed Heisenberg algebra with minimal length and equivalence principle. Phys. Rev. A 86, 062112 (2012)ADSMathSciNetCrossRefGoogle Scholar
  46. 46.
    Huber, F.M., Lewis, R.A., Messerschmid, E.W., Smith, G.A.: Precision tests of Einstein’s Weak equivalence principle for antimatter. Adv. Space Res. 25, 1245 (2000)ADSCrossRefGoogle Scholar
  47. 47.
    Saha, A.: COW test of the weak equivalence principle: a low-energy window to look into the noncommutative structure of space-time? Phys. Rev. D 89, 025010 (2014)ADSCrossRefGoogle Scholar
  48. 48.
    Unnikrishnan, C.S., Gillies, G.T.: Is the Higgs mechanism true to the equivalence principle? Int. J. Mod. Phys. D 24, 1544009 (2015)ADSCrossRefMATHGoogle Scholar
  49. 49.
    Lambiase, G.: Neutrino oscillations in non-inertial frames and the violation of the equivalence principle Neutrino mixing induced by the equivalence principle violation. EPJ C 19, 553 (2001)ADSGoogle Scholar
  50. 50.
    Damour, T.: Theoretical aspects of the equivalence principle. Class. Quant. Grav. 29, 184001 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  51. 51.
    Weng, Z.-H.: Forces in the complex octonion curved space. Int. J. Geom. Methods Mod. Phys. 13, 1650076 (2016)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Physics and Mechanical and Electrical EngineeringXiamen UniversityXiamenChina

Personalised recommendations