Advertisement

A note on entanglement entropy, coherent states and gravity

  • Madhavan Varadarajan
Editor's Choice (Research Article)

Abstract

The entanglement entropy of a free quantum field in a coherent state is independent of its stress energy content. We use this result to highlight the fact that while the Einstein equations for first order variations about a locally maximally symmetric vacuum state of geometry and quantum fields seem to follow from Jacobson’s principle of maximal vacuum entanglement entropy, their possible derivation from this principle for the physically relevant case of finite but small variations remains an open issue. We also apply this result to the context of Bianchi’s identification, independent of unknown Planck scale physics, of the first order variation of Bekenstein–Hawking area with that of vacuum entanglement entropy. We argue that under certain technical assumptions this identification seems not to be extendible to the context of finite but small variations to coherent states. Our particular method of estimation of entanglement entropy variation reveals the existence of certain contributions over and above those of References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012). We discuss the sense in which these contributions may be subleading to those in References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012).

Keywords

Coherent states in curved spacetime Entanglement entropy Gravity 

Notes

Acknowledgments

I thank Ted Jacobson for his generous help with my numerous questions with regard to Reference [2] and for his comments on a draft version of this work. I thank Abhay Ashtekar for discussions and an anonymous referee for her/his comments.

References

  1. 1.
    Jacobson, T.: Phys. Rev. Lett. 75, 1260–1263 (1995)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Jacobson, T.: e-Print: arXiv:1505.04753 [gr-qc] (2015)
  3. 3.
    Faulkner, T., Guica, M., Hartman, T., Myers, R.C., Van Raamsdonk, M.: JHEP 1403, 051 (2014)ADSCrossRefGoogle Scholar
  4. 4.
    Blanco, D., Casini, H., Hung, L.-Y., Myers, R.C.: JHEP 1308, 060 (2013)ADSMathSciNetCrossRefGoogle Scholar
  5. 5.
    Kuo, C.-I., Ford, L.: Phys. Rev. D 47, 4510–4519 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    Bianchi, E.: arXiv:1211.0522 [gr-qc] (2012)
  7. 7.
    Bianchi, E., Satz, A.: Phys. Rev. D 87, 124031 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    Fiola, T.M., Preskill, J., Strominger, A., Trivedi, S.: Phys. Rev. D 50, 3987–4014 (1994)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    Benedict, E., Pi, S.-Y.: Annals Phys. 245, 209–224 (1996)ADSMathSciNetCrossRefGoogle Scholar
  10. 10.
    Das, S., Shankaranarayanan, S.: Phys. Rev. D 73, 121701 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    Casini, H., Galante, D.A., Myers, R.C.: e-Print: arXiv:1601.00528 (2016)
  12. 12.
    Hawking, S.W.: Commun. Math. Phys. 43, 199–220 (1975)ADSMathSciNetCrossRefGoogle Scholar
  13. 13.
    Sorkin, R.D.: in Tenth International Conference on General Relativity and Gravitation, Vol. II, 734–736 (1983) edited by B. Bertotti, F. de Felice and A. Pascolin, also available as arXiv:1402.3589 [gr-qc]
  14. 14.
    Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Phys. Rev. D 34, 373–383 (1986)ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Jacobson, T., Parentani, R.: Found. Phys. 33, 323–348 (2003)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wald, R.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. The University of Chicago Press, Chicago (1994)MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Raman Research InstituteBangaloreIndia

Personalised recommendations