Skip to main content
Log in

Near-Dirichlet quantum dynamics for a \(p^3\)-corrected particle on an interval

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We study a nonrelativistic quantum mechanical particle on an interval of finite length with a Hamiltonian that has a \(p^3\) correction term, modelling potential low energy quantum gravity effects. We describe explicitly the \(U(3)\) family of the self-adjoint extensions of the Hamiltonian and discuss several subfamilies of interest. As the main result, we find a family of self-adjoint Hamiltonians, indexed by four continuous parameters and one binary parameter, whose spectrum and eigenfunctions are perturbatively close to those of the uncorrected particle with Dirichlet boundary conditions, even though the Dirichlet condition as such is not in the \(U(3)\) family. Our boundary conditions do not single out distinguished discrete values for the length of the interval in terms of the underlying quantum gravity scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amelino-Camelia, G.: Quantum-spacetime phenomenology. Living Rev. Rel. 16, 5 (2013). arXiv:0806.0339 [gr-qc]

    Google Scholar 

  2. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995). arXiv:hep-th/9412167

    Article  ADS  MathSciNet  Google Scholar 

  3. Husain, V., Kothawala, D., Seahra, S.S.: Generalized uncertainty principles and quantum field theory. Phys. Rev. D 87, 025014 (2013). arXiv:1208.5761 [hep-th]

    Article  ADS  Google Scholar 

  4. Ali, A.F., Das, S., Vagenas, E.C.: Discreteness of space from the generalized uncertainty principle. Phys. Lett. B 678, 497 (2009). arXiv:0906.5396 [hep-th]

    Article  ADS  MathSciNet  Google Scholar 

  5. Reed, M., Simon, B.: Methods of Modern Mathematical Physics II: Fourier Analysis, Self-adjointness. Academic, New York (1975)

    MATH  Google Scholar 

  6. Blank, J., Exner, P., Havlíček, M.: Hilbert Space Operators in Quantum Physics, 2nd edn. Springer, New York (2008)

    MATH  Google Scholar 

  7. Bonneau, G., Faraut, J., Valent, G.: Selfadjoint extensions of operators and the teaching of quantum mechanics. Am. J. Phys. 69, 322 (2001). arXiv:quant-ph/0103153

    Article  ADS  Google Scholar 

  8. Asorey, M., Ibort, A., Marmo, G.: Global theory of quantum boundary conditions and topology change. Int. J. Mod. Phys. A 20, 1001 (2005). arXiv:hep-th/0403048

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Ibort, A., Pérez-Pardo, J.M.: Numerical solutions of the spectral problem for arbitrary self-adjoint extensions of the one-dimensional Schrödinger equation. SIAM J. Numer. Anal. 51, 1254 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Asorey, M., Muñoz-Castañeda, J.M.: Attractive and repulsive Casimir vacuum energy with general boundary conditions. Nucl. Phys. B 874, 852 (2013). arXiv:1306.4370 [hep-th]

    Article  ADS  MATH  Google Scholar 

  11. Asorey, M., Balachandran, A.P., Pérez-Pardo, J.M.: Edge states: topological insulators, superconductors and QCD chiral bags. JHEP 1312, 073 (2013). arXiv:1308.5635 [cond-mat.mtrl-sci]

    Article  ADS  Google Scholar 

  12. Muñoz-Castañeda, J.M., Kirsten, K., Bordag, M.: QFT over the finite line. Heat kernel coefficients, spectral zeta functions and selfadjoint extensions. Lett. Math. Phys. 105, 523 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Balasubramanian, V., Das, S., Vagenas, E.C.: Generalized uncertainty principle and self-adjoint operators. arXiv:1404.3962 [hep-th]

  14. Belchev, B., Walton, M.A.: Robin boundary conditions and the Morse potential in quantum mechanics. J. Phys. A 43, 085301 (2010). arXiv:1002.2139 [quant-ph]

    Article  ADS  MathSciNet  Google Scholar 

  15. Simon, J.Z.: Higher-derivative Lagrangians, nonlocality, problems, and solutions. Phys. Rev. D 41, 3720 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  16. Louko, J., Marples, C.R.: Unpublished (2014)

  17. Kochubei, A.N.: Extensions of symmetric operators and symmetric binary relations. Math. Notes 17, 25 (1975)

    Article  Google Scholar 

  18. Brüning, J., Geyler, V., Pankrashkin, K.: Spectra of self-adjoint extensions and applications to solvable Schrödinger operators. Rev. Math. Phys. 20, 1 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I thank Saurya Das and Elias Vagenas for helpful correspondence and an anonymous referee for helpful comments. This work was supported in part by STFC (Theory Consolidated Grant ST/J000388/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorma Louko.

Appendices

Appendix 1: Subspaces of self-adjointness

In this appendix we perform the maximal linear subspace analysis that leads to the self-adjointness boundary conditions (2.8) in the main text.

1.1 Preliminaries

Let \(n\) be a positive integer and \(\mathcal {H} = \mathbb {C}^{2n}\). Define on \(\mathcal {H}\) the Hermitian form

$$\begin{aligned} B(u,v) = u^\dagger \begin{pmatrix} I &{}\quad 0 \\ 0 &{}\quad -I \end{pmatrix} v, \end{aligned}$$
(6.1)

where \(I\) is the \(n\times n\) identity matrix.

Lemma

The maximal linear subspaces \(V \subset \mathcal {H}\) on which \(B(u,v)=0\) for all \(u,v \in V\) are

$$\begin{aligned} V_U = \bigl \{ v \in \mathcal {H} \mid \bigl ( {\begin{matrix} U &{}\quad -I \\ 0 &{}\quad 0 \end{matrix}} \bigr ) v =0 \bigr \} , \end{aligned}$$
(6.2)

where \(U \in U(n)\).

Proof

Let \(V \subset \mathcal {H}\) be a linear subspace on which \(B(u,v)=0\) for all \(u,v \in V\). Suppose \(w = \bigl ( {\begin{matrix} w_1 \\ w_2 \end{matrix}} \bigr ) \in V\) where \(w_1, w_2 \in \mathbb {C}^n\). Then \(B(w,w)=0\) implies \(\Vert w_1\Vert = \Vert w_2\Vert \). As \(V\) is a linear subspace, each \(v \in V\) must hence have the form \(\bigl ( {\begin{matrix} v_1 \\ U v_1 \end{matrix}} \bigr )\), where \(U\) is a constant \(n\times n\) matrix, such that if \(V_1 \subset \mathbb {C}^n\) denotes the projection of \(V\) to its first \(n\) components, \(U\) maps \(V_1\) isometrically to \(\mathbb {C}^n\). For \(u = \bigl ( {\begin{matrix} u_1 \\ U u_1 \end{matrix}} \bigr )\) and \(v = \bigl ( {\begin{matrix} v_1 \\ U v_1 \end{matrix}} \bigr )\) in \(V\), \(B(u,v)=0\) is equivalent to \(u_1^\dagger \bigl (U^\dagger U - I \bigr ) v_1 = 0\). This holds for all \(u_1 , v_1 \in \mathbb {C}^n\) iff \(U^\dagger U = I\). \(\square \)

Remark

The maximal linear subspaces on which \(B(v,v)=0\) coincide with (6.2). The proof is as above but setting at every step \(u=v\).

For generalisations, see [17, 18].

1.2 Main proposition

Let \(n\) be a positive integer and \(\mathcal {H} = \mathbb {C}^{2n}\). Define on \(\mathcal {H}\) the Hermitian form

$$\begin{aligned} C(u,v) = u^\dagger A v, \end{aligned}$$
(6.3)

where \(A\) is a Hermitian \(2n\times 2n\) matrix with \(n\) strictly positive eigenvalues and \(n\) strictly negative eigenvalues (each eigenvalue counted with its multiplicity). By matrix diagonalisation, there exists a unitary \(2n\times 2n\) matrix \(P\) and a real diagonal positive definite \(2n\times 2n\) matrix \(D\) such that

$$\begin{aligned} A = {(D P)}^\dagger \begin{pmatrix} I&{}\quad 0 \\ 0 &{}\quad -I \end{pmatrix} (D P) . \end{aligned}$$
(6.4)

Proposition

The maximal linear subspaces \(V \subset \mathcal {H}\) on which \(C(u,v)=0\) for all \(u,v \in V\) are

$$\begin{aligned} V_U = \bigl \{ v \in \mathcal {H} \mid \bigl ( {\begin{matrix} U &{}\quad -I \\ 0 &{}\quad 0 \end{matrix}} \bigr ) (D P) v =0 \bigr \} , \end{aligned}$$
(6.5)

where \(U \in U(n)\).

Proof

Follows from the Lemma by observing that \(C(u,v) = B( DP u, D P v)\). \(\square \)

1.3 Application

We specialise (6.3) to

$$\begin{aligned} A = \begin{pmatrix} G&{}\quad 0 \\ 0 &{}\quad -G \end{pmatrix} \end{aligned}$$
(6.6)

where \(G\) is a Hermitian \(3\times 3\) matrix with the eigenvalues \(\lambda _-<0\), \(\lambda _+>0\) and \(\lambda _0>0\) and the corresponding orthogonal normalised eigen-covectors

$$\begin{aligned} \begin{pmatrix} a_1&a_2&a_3 \end{pmatrix}, \quad \begin{pmatrix} b_1&b_2&b_3 \end{pmatrix}, \quad \begin{pmatrix} c_1&c_2&c_3 \end{pmatrix}. \end{aligned}$$
(6.7)

The matrix

$$\begin{aligned} \tilde{P} = \begin{pmatrix} a_1&{}\quad a_2 &{}\quad a_3 \\ b_1&{}\quad b_2 &{}\quad b_3 \\ c_1&{}\quad c_2 &{}\quad c_3 \\ \end{pmatrix} \end{aligned}$$
(6.8)

is then unitary, and

$$\begin{aligned} \begin{pmatrix} \tilde{P}&{} 0 \\ 0 &{} \tilde{P} \end{pmatrix} A \begin{pmatrix} \tilde{P}^\dagger &{} 0 \\ 0 &{} \tilde{P}^\dagger \end{pmatrix} = {{\mathrm{diag}}}(\lambda _-, \lambda _+, \lambda _0,- \lambda _-, - \lambda _+, - \lambda _0). \end{aligned}$$
(6.9)

Let

$$\begin{aligned} Q= & {} \begin{pmatrix} 0&{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 \\ 0&{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0&{}\quad 0 &{}\quad 1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 1&{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ 0&{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 \\ 0&{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 0 &{}\quad 1 \\ \end{pmatrix}, \end{aligned}$$
(6.10)
$$\begin{aligned} \tilde{D}= & {} \begin{pmatrix} \sqrt{-\lambda _-}&{}\quad 0 &{}\quad 0 \\ 0&{}\quad \sqrt{\lambda _+} &{}\quad 0 \\ 0&{}\quad 0 &{}\quad \sqrt{\lambda _0} \\ \end{pmatrix}. \end{aligned}$$
(6.11)

Then (6.4) holds with

$$\begin{aligned} DP = \begin{pmatrix} \tilde{D}&{}\quad 0 \\ 0 &{}\quad \tilde{D} \end{pmatrix} Q \begin{pmatrix} \tilde{P}&{}\quad 0 \\ 0 &{}\quad \tilde{P} \end{pmatrix}. \end{aligned}$$
(6.12)

Writing in (6.5)

$$\begin{aligned} v = \begin{pmatrix} \rho _1 \\ \rho _2 \\ \rho _3 \\ \sigma _1 \\ \sigma _2 \\ \sigma _3 \\ \end{pmatrix}, \end{aligned}$$
(6.13)

we have

$$\begin{aligned} DP \begin{pmatrix} \rho _1 \\ \rho _2 \\ \rho _3 \\ \sigma _1 \\ \sigma _2 \\ \sigma _3 \\ \end{pmatrix}= \begin{pmatrix} \sqrt{-\lambda _-} \left( a_1 \sigma _1 + a_2 \sigma _2 + a_3 \sigma _3\right) \\ \sqrt{\lambda _+} \left( b_1 \rho _1 + b_2 \rho _2 + b_3 \rho _3\right) \\ \sqrt{\lambda _0} \left( c_1 \rho _1 + c_2 \rho _2 + c_3 \rho _3\right) \\ \sqrt{-\lambda _-} \left( a_1 \rho _1 + a_2 \rho _2 + a_3 \rho _3\right) \\ \sqrt{\lambda _+} \left( b_1 \sigma _1 + b_2 \sigma _2 + b_3 \sigma _3\right) \\ \sqrt{\lambda _0} \left( c_1 \sigma _1 + c_2 \sigma _2 + c_3 \sigma _3\right) \\ \end{pmatrix}, \end{aligned}$$
(6.14)

and the subspace condition (6.5) reads

$$\begin{aligned} U \begin{pmatrix} \sqrt{-\lambda _-} \left( a_1 \sigma _1 + a_2 \sigma _2 + a_3 \sigma _3\right) \\ \sqrt{\lambda _+} \left( b_1 \rho _1 + b_2 \rho _2 + b_3 \rho _3\right) \\ \sqrt{\lambda _0} \left( c_1 \rho _1 + c_2 \rho _2 + c_3 \rho _3\right) \\ \end{pmatrix} = \begin{pmatrix} \sqrt{-\lambda _-} \left( a_1 \rho _1 + a_2 \rho _2 + a_3 \rho _3\right) \\ \sqrt{\lambda _+} \left( b_1 \sigma _1 + b_2 \sigma _2 + b_3 \sigma _3\right) \\ \sqrt{\lambda _0} \left( c_1 \sigma _1 + c_2 \sigma _2 + c_3 \sigma _3\right) \\ \end{pmatrix}. \end{aligned}$$
(6.15)

This is the condition (2.8) in the main text.

Appendix 2: Small \(q\) expansions of the eigenvalues and eigen-covectors

In this appendix we give the small \(q\) expansions of the eigenvalues and \(\sqrt{|\lambda |}\) times the normalised eigen-covectors (2.6) of the matrix (2.3). The phases of the eigen-covectors are chosen so that \(a_1>0\), \(b_1>0\) and \(c_3>0\).

$$\begin{aligned} \lambda _-= & {} -1+\frac{1}{2}\,q-\frac{5}{8}\,{q}^{2}-\frac{1}{2}\,{q}^{3}-{\frac{7}{128}}\,{q}^{4}+\frac{1}{2}\,{q} ^{5}+{\frac{675}{1024}}\,{q}^{6} + O({q}^8) \end{aligned}$$
(6.16a)
$$\begin{aligned} \lambda _+= & {} 1+\frac{1}{2}\,q+\frac{5}{8}\,{q}^{2}-\frac{1}{2}\,{q}^{3}+{\frac{7}{128}}\,{q}^{4}+\frac{1}{2}\,{q}^ {5}-{\frac{675}{1024}}\,{q}^{6} + O({q}^8) \end{aligned}$$
(6.16b)
$$\begin{aligned} \lambda _0= & {} {q}^{3} \left( 1-{q}^{2}+3\,{q}^{6} + O({q}^8) \right) \end{aligned}$$
(6.16c)
$$\begin{aligned} \sqrt{-\lambda _-} \,a_1= & {} \frac{1}{\sqrt{2}} \Bigl ( 1+\frac{3}{16}\,{q}^{2}-{\frac{83}{512}}\,{q}^{4}+{ \frac{3605}{8192}}\,{q}^{6}+\frac{1}{2}\,{q}^{7} + O({q}^8) \Bigr ) \end{aligned}$$
(6.17a)
$$\begin{aligned} \sqrt{-\lambda _-} \,a_2= & {} -\frac{i}{\sqrt{2}} \Bigl ( 1 -\frac{1}{2}\,q -\frac{3}{16}\,{q}^{2} -{\frac{3}{32}}\,{q}^{3} +{\frac{101}{512}}\,{q}^{4} +{\frac{595}{1024}}\,{q}^{5} +{\frac{4035}{8192}}\,{q}^{6} \nonumber \\&-{\frac{10261}{16384}}\,{q}^{7} + O({q}^8) \Bigr ) \end{aligned}$$
(6.17b)
$$\begin{aligned} \sqrt{-\lambda _-} \,a_3= & {} \frac{q}{\sqrt{2}} \Bigl ( 1+\frac{1}{2}\,q-\frac{3}{16}\,{q}^{2}-{\frac{29}{32}}\,{q}^{3}-{\frac{411}{512}}\,{q}^{4}+{\frac{749}{1024}}\,{q}^{5}+{\frac{21955}{8192} }\,{q}^{6} \nonumber \\&+{\frac{33909}{16384}}\,{q}^{7} + O({q}^8) \Bigr ) \end{aligned}$$
(6.17c)
$$\begin{aligned} \sqrt{\lambda _+} \,b_1= & {} \frac{1}{\sqrt{2}} \Bigl ( 1+\frac{3}{16}\,{q}^{2}-{\frac{83}{512}}\,{q}^{4}+{\frac{3605}{ 8192}}\,{q}^{6}-\frac{1}{2}\,{q}^{7} + O({q}^8) \Bigr ) \end{aligned}$$
(6.18a)
$$\begin{aligned} \sqrt{\lambda _+} \,b_2= & {} \frac{i}{\sqrt{2}} \Bigl ( 1 +\frac{1}{2}\,q -\frac{3}{16}\,{q}^{2} +{\frac{3}{32}}\,{q}^{3} +{\frac{101}{512}}\,{q}^{4} -{\frac{595}{1024}}\,{q}^{5} +{\frac{4035}{8192}}\,{q}^{6} \nonumber \\&+{\frac{10261}{16384}}\,{q}^{7} + O({q}^8) \Bigr ) \end{aligned}$$
(6.18b)
$$\begin{aligned} \sqrt{\lambda _+} \,b_3= & {} -\frac{q}{\sqrt{2}} \Bigl ( 1-\frac{1}{2}\,q-\frac{3}{16}\,{q}^{2}+{\frac{29}{32}}\,{q}^{3}-{ \frac{411}{512}}\,{q}^{4}-{\frac{749}{1024}}\,{q}^{5}+{\frac{21955}{8192}}\,{q}^{6} \nonumber \\&-{\frac{33909}{16384}}\,{q}^{7} + O({q}^8) \Bigr ) \end{aligned}$$
(6.18c)
$$\begin{aligned} \sqrt{\lambda _0} \,c_1= & {} -{q}^{7/2} \left( 1-2\,{q}^{2}+{q}^{4}+7\,{q}^{6} + O({q}^8) \right) \end{aligned}$$
(6.19a)
$$\begin{aligned} \sqrt{\lambda _0} \,c_2= & {} i{q}^{5/2} \left( 1-{q}^{2}-{q}^{4}+7\,{q}^{6} + O({q}^8) \right) \end{aligned}$$
(6.19b)
$$\begin{aligned} \sqrt{\lambda _0} \,c_3= & {} {q}^{3/2} \left( 1-{q}^{2}+4\,{q}^{6} + O({q}^8) \right) \end{aligned}$$
(6.19c)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Louko, J. Near-Dirichlet quantum dynamics for a \(p^3\)-corrected particle on an interval. Gen Relativ Gravit 47, 55 (2015). https://doi.org/10.1007/s10714-015-1895-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-015-1895-3

Keywords

Navigation