Thin-disk models in an integrable Weyl–Dirac theory

Research Article


We construct a class of static, axially symmetric solutions representing razor-thin disks of matter in the Integrable Weyl–Dirac theory proposed in Israelit (Found Phys 29:1303, 1999). The main differences between these solutions and the corresponding general relativistic one are analyzed, focusing on the behavior of physical observables (rotation curves of test particles, density and pressure profiles). We consider the case in which test particles move along Weyl geodesics. The same rotation curve can be obtained from many different solutions of the Weyl–Dirac theory, although some of these solutions present strong qualitative differences with respect to the usual general relativistic model (such as the appearance of a ring-like density profile). In particular, for typical galactic parameters all rotation curves of the Weyl–Dirac model present Keplerian fall-off. As a consequence, we conclude that a more thorough analysis of the problem requires the determination of the gauge function \(\beta \) on galactic scales, as well as restrictions on the test-particle behavior under the action of the additional geometrical fields introduced by this theory.


Weyl–Dirac theory Exact solutions Galaxy astrophysics Modified gravity 



R.S.S.V. thanks Davi C. Rodrigues for helpful discussions about the astrophysics of galaxies, Mark Israelit for valuable comments on an earlier version of this manuscript and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) for financial support. This work is dedicated to the memory of Prof. Patricio S. Letelier, who passed away after the elaboration of the first draft of this manuscript.


  1. 1.
    Binney, J., Tremaine, S.: Galactic Dynamics, 2nd ed. Princeton University Press, Princeton (2008)Google Scholar
  2. 2.
    Karas, V., Huré, J.-M., Semerák, O.: Gravitating discs around black holes. Class. Quantum Gravity 21, R1 (2004)ADSCrossRefMATHGoogle Scholar
  3. 3.
    Semerák, O.: Towards Gravitating Discs Around Stationary Black Holes. arXiv:gr-qc/0204025Google Scholar
  4. 4.
    Bonnor, W.A., Sackfield, A.: The interpretation of some spheroidal metrics. Comm. Math. Phys. 8, 338 (1968)ADSCrossRefMATHMathSciNetGoogle Scholar
  5. 5.
    Morgan, T., Morgan, L.: The gravitational field of a disk. Phys. Rev. 183, 1097 (1969)ADSCrossRefGoogle Scholar
  6. 6.
    Morgan, L., Morgan, T.: Gravitational field of shells and disks in general relativity. Phys. Rev. D 2, 2756 (1970)ADSCrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Bičák, J., Lynden-Bell, D., Katz, J.: Relativistic disks as sources of static vacuum spacetimes. Phys. Rev. D 47, 4334 (1993)ADSCrossRefMathSciNetGoogle Scholar
  8. 8.
    Vogt, D., Letelier, P.S.: Exact general relativistic perfect fluid disks with halos. Phys. Rev. D 68, 084010 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    Coimbra-Araújo, C.H., Letelier, P.S.: A thin disk in higher-dimensional space-time and dark matter interpretation. Phys. Rev. D 76, 043522 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    Miyamoto, M., Nagai, R.: Three-dimensional models for the distribution of mass in galaxies. Publ. Astron. Soc. Jpn. 27, 533 (1975)ADSGoogle Scholar
  11. 11.
    González, G.A., Letelier, P.S.: Exact general relativistic thick disks. Phys. Rev. D 69, 044013 (2004)ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Vogt, D., Letelier, P.S.: Relativistic models of galaxies. Mon. Not. R. Astron. Soc. 363, 268–284 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    Coimbra-Araújo, C.H., Letelier, P.S.: Gravity with extra dimensions and dark matter interpretation: phenomenological example via Miyamoto–Nagai galaxy. Braz. J. Phys. 42, 100 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    Begeman, K.G.: HI Rotation Curves of Spiral Galaxies. PhD. Thesis, Rijksuniversiteit Groningen (1987)Google Scholar
  15. 15.
    Begeman, K.G.: HI rotation curves of spiral galaxies—I.NGC3198. Astron. Astrophys. 223, 47–60 (1989)ADSGoogle Scholar
  16. 16.
    de Blok, W.J.G., McGaugh, S.S., Rubin, V.: High-resolution rotation curves of Low Surface Brightness galaxies—II. Mass models. Astrophys. J. 122, 2396–2427 (2001)Google Scholar
  17. 17.
    de Blok, W.J.G., McGaugh, S.S.: The dark and visible matter content of low surface brightness disc galaxies. Mon. Not. R. Astron. Soc. 290, 533 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    Zurita, A., Relaño, M., Beckman, J.E., Knapen, J.H.: Ionized gas kinematics and massive star formation in NGC 1530. Astron. Astrophys. 413, 73 (2004)ADSCrossRefGoogle Scholar
  19. 19.
    de Blok, W.J.G.: The core-cusp problem. Adv. Astron. 2010, 789293 (2010)Google Scholar
  20. 20.
    Navarro, J.F., Frenk, C.S., White, S.D.M.: The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996)ADSCrossRefGoogle Scholar
  21. 21.
    Einasto, J.: Dark Matter. arXiv:0901.0632v2 [astro-ph.CO]Google Scholar
  22. 22.
    Sanders, R.H.: The Dark Matter Problem: A Historical Perspective. Cambridge University Press, Cambridge (2010)Google Scholar
  23. 23.
    Rodrigues, D.C., Letelier, P.S., Shapiro, I.L.: Galaxy rotation curves from general relativity with renormalization group corrections. JCAP 04, 020 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    Brownstein, J.R., Moffat, J.W.: Galaxy rotation curves without nonbaryonic dark matter. Astrophys. J. 636, 721–741 (2006)ADSCrossRefGoogle Scholar
  25. 25.
    Sanders, R.H., McGaugh, S.S.: Modified Newtonian dynamics as an alternative to dark matter. Ann. Rev. Astron. Astrophys. 40, 263–317 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    Weyl, H.: Gravitation and electricity. In: O’Rafeartaigh (ed.) The Dawning of Gauge Theory, pp. 24–37. Princeton University Press, Princeton (1997)Google Scholar
  27. 27.
    Dirac, P.A.M.: Long range forces and broken symmetries. Proc. R. Soc. Lond. A 333, 403–418 (1973)Google Scholar
  28. 28.
    Canuto, V., Adams, P.J., Hsieh, S.-H., Tsiang, E.: Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. D 16(6), 1643–1663 (1977)ADSCrossRefMathSciNetGoogle Scholar
  29. 29.
    Israelit, M.: Matter creation by geometry in an integrable Weyl–Dirac theory. Found. Phys. 29, 1303 (1999)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Carroll, R.: Remarks on Weyl Geometry and Quantum Mechanics. arXiv:0705.3921v3 [gr-qc]Google Scholar
  31. 31.
    Israelit, M.: Primary matter creation in a Weyl–Dirac cosmological model. Found. Phys. 32, 295 (2002)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Israelit, M.: Quintessence and dark matter created by Weyl–Dirac geometry. Found. Phys. 32, 945 (2002)CrossRefMathSciNetGoogle Scholar
  33. 33.
    Israelit, M.: A Weyl–Dirac cosmological model with DM and DE. Gen. Relativ. Gravit. 43, 751 (2011)ADSCrossRefMATHMathSciNetGoogle Scholar
  34. 34.
    Mirabotalebi, S., Jalalzadeh, S., Sadegh Movahed, M., Sepangi, H.R.: Weyl–Dirac predictions on galactic scales. Mon. Not. R. Astron. Soc. 385, 986 (2008)ADSCrossRefGoogle Scholar
  35. 35.
    Letelier, P.S.: Stability of circular orbits of particles moving around black holes surrounded by axially symmetric structures. Phys. Rev. D 68, 104002 (2003)ADSCrossRefMathSciNetGoogle Scholar
  36. 36.
    Folland, G.B.: Weyl manifolds. J. Differ. Geom. 4, 145 (1970)MATHMathSciNetGoogle Scholar
  37. 37.
    O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press, New York (1983)MATHGoogle Scholar
  38. 38.
    Buchdahl, H.A.: Reciprocal static metrics and scalar fields in the general theory of relativity. Phys. Rev. 115, 1325 (1959)ADSCrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Griffiths, J.B., Podolský, J.: Exact Space-Times in Einstein’s General relativity. Cambridge University Press, Cambridge (2009)Google Scholar
  40. 40.
    Taub, A.H.: Space-times with distribution-valued curvature tensors. J. Math. Phys. 21, 1423 (1980)ADSCrossRefMathSciNetGoogle Scholar
  41. 41.
    Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, 5th ed. Harcourt Academic Press, Burlington (2001)Google Scholar
  42. 42.
    Jackson, J.D.: Classical Electrodynamics, 3rd ed. Wiley, New York (1999)Google Scholar
  43. 43.
    Landau, L.D., Lifshitz, E.M.: Fluid Mechanics, Course of Theoretical Physics vol. 6, 2nd ed. Elsevier, Amsterdam (1987)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinasBrazil
  2. 2.Departamento de Matemática Aplicada-IMECCUniversidade Estadual de CampinasCampinasBrazil

Personalised recommendations