Skip to main content
Log in

Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Variable-density sources have been paid more attention in gravity modeling. We conduct the computation of gravity gradient tensor of given mass sources with variable density in this paper. 3D rectangular prisms, as simple building blocks, can be used to approximate well 3D irregular-shaped sources. A polynomial function of depth can represent flexibly the complicated density variations in each prism. Hence, we derive the analytic expressions in closed form for computing all components of the gravity gradient tensor due to a 3D right rectangular prism with an arbitrary-order polynomial density function of depth. The singularity of the expressions is analyzed. The singular points distribute at the corners of the prism or on some of the lines through the edges of the prism in the lower semi-space containing the prism. The expressions are validated, and their numerical stability is also evaluated through numerical tests. The numerical examples with variable-density prism and basin models show that the expressions within their range of numerical stability are superior in computational accuracy and efficiency to the common solution that sums up the effects of a collection of uniform subprisms, and provide an effective method for computing gravity gradient tensor of 3D irregular-shaped sources with complicated density variation. In addition, the tensor computed with variable density is different in magnitude from that with constant density. It demonstrates the importance of the gravity gradient tensor modeling with variable density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Athy LF (1930) Density, porosity, and compaction of sedimentary rocks. AAPG Bull 14(1):1–24

    Google Scholar 

  • Barnes G, Barraud J (2012) Imaging geologic surfaces by inverting gravity gradient data with depth horizons. Geophysics 77(1):G1–G11

    Article  Google Scholar 

  • Barnes G, Lumley J (2011) Processing gravity gradient data. Geophysics 76(2):I33–I47

    Article  Google Scholar 

  • Barraud J (2013) Improving identification of valid depth estimates from gravity gradient data using curvature and geometry analysis. First Break 31(4):87–92

    Google Scholar 

  • Beiki M (2011) Analytic signals of gravity gradient tensor and their application to estimate source location. Geophysics 75(6):I59–I74

    Article  Google Scholar 

  • Beiki M, Pedersen LB (2010) Eigenvector analysis of gravity gradient tensor to locate geologic bodies. Geophysics 75(6):I37–I49

    Article  Google Scholar 

  • Beiki M, Pedersen LB (2011) Window constrained inversion of gravity gradient tensor data using dike and contact models. Geophysics 76(6):I59–I72

    Article  Google Scholar 

  • Beiki M, Keating P, Clark DA (2014) Interpretation of magnetic and gravity gradient tensor data using normalized source strength—a case study from McFaulds Lake, Northern Ontario, Canada. Geophys Prospect 62(5):1180–1192

    Article  Google Scholar 

  • Blakely RJ (1995) Potential theory in gravity and magnetic applications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Bouman J, Ebbing J, Meekes S, Fattah RA, Fuchs M, Gradmann S, Haagmans R, Lieb A, Schmidt M, Dettmering D, Bosch W (2015) GOCE gravity gradient data for lithospheric modeling. Int J Appl Earth Obs Geoinf 35:16–30

    Article  Google Scholar 

  • Bowin C, Scheer E, Smith W (1986) Depth estimates from ratios of gravity, geoid, and gravity gradient anomalies. Geophysics 51(1):123–136

    Article  Google Scholar 

  • Capriotti J, Li Y (2014) Gravity and gravity gradient data: understanding their information content through joint inversions. SEG Denver 2014 annual meeting, pp. 1329–1333

  • Cevallos C, Kovac P, Lowe SJ (2013) Application of curvatures to airborne gravity gradient data in oil exploration. Geophysics 78(4):G81–G88

    Article  Google Scholar 

  • Chai Y, Hinze WJ (1988) Gravity inversion of an interface above which the density contrast varies exponentially with depth. Geophysics 53(6):837–845

    Article  Google Scholar 

  • Chakravarthi V, Raghuram HM, Singh SB (2002) 3-D forward gravity modeling of basement interfaces above which the density contrast varies continuously with depth. Comput Geosci 28(1):53–57

    Article  Google Scholar 

  • Chappell A, Kusznir N (2008) An algorithm to calculate the gravity anomaly of sedimentary basins with exponential density-depth relationships. Geophys Prospect 56(2):249–258

    Article  Google Scholar 

  • Conway J (2015) Analytical solution from vector potentials for the gravitational field of a general polyhedron. Celest Mech Dyn Astron 121(1):17–38

    Article  Google Scholar 

  • Čuma M, Wilson GA, Zhdanov MS (2012) Large-scale 3d inversion of potential field data. Geophys Prospect 60(6):1186–1199

    Article  Google Scholar 

  • D’Urso MG (2012) New expressions of the gravitational potential and its derivatives for the prism. In: Sneeuw N, Novak P, Crespi M, Sansò F (eds) 7th Hotine–Marussi International Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, Springer

  • D’Urso MG (2014a) Analytical computation of gravity effects for polyhedral bodies. J Geodesy 88(1):13–29

    Article  Google Scholar 

  • D’Urso MG (2014b) Gravity effects of polyhedral bodies with linearly varying density. Celest Mech Dyn Astron 120(4):349–372

    Article  Google Scholar 

  • D’Urso MG (2015) The gravity anomaly of a 2D polygonal body having density contrast given by polynomial functions. Surv Geophys 36(3):391–425

    Article  Google Scholar 

  • D’Urso MG (2016) A remark on the computation of the gravitational potential of masses with linearly varying density. In: Sneeuw N, Novak P, Crespi M, Sansò F (eds) 8th Hotine–Marussi international symposium on mathematical geodesy. International Association of Geodesy Symposia, Springer

  • D’Urso MG, Trotta S (2017) Gravity anomaly of polyhedral bodies having a polynomial density contrast. Surv Geophys 38(4):781–832

    Article  Google Scholar 

  • Droujinine A, Vasilevsky A, Evans R (2007) Feasibility of using full tensor gradient (FTG) data for detection of local lateral density contrasts during reservoir monitoring. Geophys J Int 169(3):795–820

    Article  Google Scholar 

  • Dubey CP, Tiwari VM (2016) Computation of the gravity field and its gradient: some applications. Comput Geosci 88:83–96

    Article  Google Scholar 

  • Forsberg R (1984) A study of terrain reductions, density anomalies and geophysical inversion methods in gravity field modelling. Ohio State Univ Columbus Dept Of Geodetic Science and Surveying, No. OSU/DGSS-355

  • Gallardo-Delgado LA, Pérez-Flores MA, Gómez-Treviño E (2003) A versatile algorithm for joint 3D inversion of gravity and magnetic data. Geophysics 68(3):949–959

    Article  Google Scholar 

  • García-Abdeslem J (1992) Gravitational attraction of a rectangular prism with depth-dependent density. Geophysics 57(3):470–473

    Article  Google Scholar 

  • García-Abdeslem J (2005) The gravitational attraction of a right rectangular prism with density varying with depth following a cubic polynomial. Geophysics 70(6):J39–J42

    Article  Google Scholar 

  • Geng MX, Huang DN, Yang QJ, Liu YP (2014) 3D inversion of airborne gravity-gradiometry data using cokriging. Geophysics 79(4):G37–G47

    Article  Google Scholar 

  • Guo ZH, Guan ZN, Xiong SQ (2004) Cuboid ∆T and its gradient forward theoretical expressions without analytic odd points. Chin J Geophys 47(6):1277–1285

    Article  Google Scholar 

  • Haáz IB (1953) Relations between the potential of the attraction of the mass contained in a finite rectangular prism and its first and second derivatives. Geophys Trans II 7:57–66

    Google Scholar 

  • Hayes TJ, Tiampo KF, Fernández J, Rundle JB (2008) A gravity gradient method for characterizing the post-seismic deformation field for a finite fault. Geophys J Int 173(3):802–805

    Article  Google Scholar 

  • Holstein H (2003) Gravimagnetic anomaly formulas for polyhedra of spatially linear media. Geophysics 68(1):157–167

    Article  Google Scholar 

  • Holstein H, Ketteridge B (1996) Gravimetric analysis of uniform polyhedra. Geophysics 61(2):357–364

    Article  Google Scholar 

  • Hou ZL, Wei XH, Huang DN (2016) Fast density inversion solution for full tensor gravity gradiometry data. Pure Appl Geophys 173(2):509–523

    Article  Google Scholar 

  • Hudec MR, Jackson MPA, Schultz-Ela DD (2006) The paradox of minibasin subsidence into salt: clues to the evolution of crustal basins. Geol Soc Am Bull 121(1–2):201–221

    Google Scholar 

  • Jekeli C, Zhu L (2006) Comparison of methods to model the gravitational gradients from topographic data bases. Geophys J Int 166(3):999–1014

    Article  Google Scholar 

  • Jiang L, Zhang J, Feng ZB (2017) A versatile solution for the gravity anomaly of 3D prism-meshed bodies with depth-dependent density contrast. Geophysics 82(4):G77–G86

    Article  Google Scholar 

  • Jorgensen GJ, Kisabeth JL, Huffman AR, Sinton JB, Bell DW (2002) Method for gravity and magnetic data inversion using vector and tensor data with seismic imaging and geopressure prediction for oil, gas and mineral exploration and production. US, US6502037

  • Kim S, Wessel P (2016) New analytic solutions for modeling vertical gravity gradient anomalies. Geochem Geophys Geosyst 17(5):1915–1924

    Article  Google Scholar 

  • Kwok YK (1991) Singularities in gravity computation for vertical cylinders and prisms. Geophys J Int 104(1):1–10

    Article  Google Scholar 

  • LaFehr TR, Nabighian MN (2012) Fundamentals of gravity exploration, society of exploration geophysicists. https://doi.org/10.1190/1.0781560803058

  • Leonardo U, Barbosa VCF (2012) Robust 3D gravity gradient inversion by planting anomalous densities. Geophysics 77(4):G55–G66

    Article  Google Scholar 

  • Li X, Chouteau M (1998) Three-dimensional gravity modeling in all space. Surv Geophys 19(4):339–368

    Article  Google Scholar 

  • Lu W, Qian J (2015) A local level-set method for 3D inversion of gravity-gradient data. Geophysics 80(1):G35–G51

    Article  Google Scholar 

  • Luo Y, Yao CL (2007) Forward modeling of gravity, gravity gradients, and magnetic anomalies due to complex bodies. J Chin Univ Geosci 18(3):280–286

    Article  Google Scholar 

  • Martinez C, Li Y (2011) Inversion of regional gravity gradient data over the Vredefort Impact Structure, South Africa. In: SEG technical program expanded abstracts 2011. Society of Exploration Geophysicists, pp. 841–845

  • Martinez C, Li Y (2016) Denoising of gravity gradient data using an equivalent source technique. Geophysics 81(4):G67–G79

    Article  Google Scholar 

  • Martinez C, Li Y, Krahenbuhl R, Braga MA (2013) 3D inversion of airborne gravity gradiometry data in mineral exploration: a case study in the Quadrilatero Ferrifero, Brazil. Geophysics 78(1):B1–B11

    Article  Google Scholar 

  • Mataragio J, Kikley J (2009) Application of full tensor gradient invariants in detection of intrusion-hosted sulphide mineralization: implications for deposition mechanisms. First Break 27(7):95–98

    Google Scholar 

  • Nagy D, Papp G, Benedek J (2000) The gravitational potential and its derivatives for the prism. J Geodesy 74(7):552–560

    Article  Google Scholar 

  • Okabe M (1979) Analytical expressions for gravity anomalies due to homogeneous polyhedral bodies and translations into magnetic anomalies. Geophysics 44(4):730–741

    Article  Google Scholar 

  • Oliveira VC, Barbosa VCF (2013) 3-D radial gravity gradient inversion. Geophys J Int 195(2):883–902

    Article  Google Scholar 

  • Oruç B (2010) Depth estimation of simple causative sources from gravity gradient tensor invariants and vertical component. Pure appl Geophys 167(10):1259–1272

    Article  Google Scholar 

  • Oruç B (2011) Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure Appl Geophys 168(10):1769–1780

    Article  Google Scholar 

  • Oruç B, Sertçelik İ, Kafadar Ö, Selim HH (2013) Structural interpretation of the Erzurum basin, eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. J Appl Geophys 88(1):105–113

    Article  Google Scholar 

  • Pan Q, Liu DJ, Geng M, Cheng X, Wang X (2016) Euler deconvolution of the analytic signals of gravity gradient tensor for underground horizontal pipeline. In: 78th EAGE Conference and Exhibition 2016, EAGE, Extended abstract. https://doi.org/10.3997/2214-4609.201600664

  • Pedersen LB (1990) The gradient tensor of potential field anomalies: some implications on data collection and data processing of maps. Geophysics 55(12):1558–1566

    Article  Google Scholar 

  • Petrović S (1996) Determination of the potential of homogeneous polyhedral bodies using line integrals. J Geodesy 71(1):44–52

    Article  Google Scholar 

  • Pilkington M (2014) Evaluating the utility of gravity gradient tensor components. Geophysics 79(1):G1–G14

    Article  Google Scholar 

  • Pohanka V (1988) Optimum expression for computation of the gravity field of a homogeneous polyhedral body. Geophys Prospect 36(7):733–751

    Article  Google Scholar 

  • Prutkin I, Tenzer R (2009) The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J Geodesy 83(12):1163–1170

    Article  Google Scholar 

  • Qin P, Huang D, Yuan Y, Geng M, Liu J (2016) Integrated gravity and gravity gradient 3D inversion using the non-linear conjugate gradient. J Appl Geophys 126:52–73

    Article  Google Scholar 

  • Rao DB (1990) Analysis of gravity anomalies of sedimentary basins by an asymmetrical trapezoidal model with quadratic density function. Geophysics 55(2):226–231

    Article  Google Scholar 

  • Rao CV, Raju ML, Chakravarthi V (1995) Gravity modelling of an interface above which the density contrast decreases hyperbolically with depth. J Appl Geophys 34(1):63–67

    Article  Google Scholar 

  • Ren ZY, Chen CJ, Pan KJ, Kalscheuer T, Maurer H, Tang J (2017) Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts. Surv Geophys 38(2):479–502

    Article  Google Scholar 

  • Rim H, Li Y (2012) Single-hole imaging using borehole gravity gradiometry. Geophysics 77(5):G67–G76

    Article  Google Scholar 

  • Rim H, Li Y (2016) Gravity gradient tensor due to a cylinder. Geophysics 81(4):G59–G66

    Article  Google Scholar 

  • Saad AH (2006) Understanding gravity gradients—a tutorial. Lead Edge 25(8):942–949

    Article  Google Scholar 

  • Sastry RG, Gokula A (2016) Full gravity gradient tensor of a vertical pyramid model of flat top & bottom with depth-wish linear density variation II[C]//Symposium on the application of geophysics to engineering and environmental problems 2015. Soc Explor Geophys Environ Eng Geophys Soc 2016:294–301. https://doi.org/10.4133/SAGEEP.29-051

    Google Scholar 

  • Shi L, Li YH, Zhang EH (2015) A new approach for density contrast interface inversion based on the parabolic density function in the frequency domain. J Appl Geophys 116:1–9

    Article  Google Scholar 

  • Sun Y, Yang W, Zeng X, Zhang Z (2016) Edge enhancement of potential field data using spectral moments. Geophysics 81(1):G1–G11

    Article  Google Scholar 

  • Sykes TJS (1996) A correction for sediment load upon the ocean floor: uniform versus varying sediment density estimations—implications for isostatic correction. Mar Geol 133(1–2):35–49

    Article  Google Scholar 

  • Tsoulis D (2000) A note on the gravitational field of the right rectangular prism. Bollettino di Geodesia e Scienze Affini 59(1):21–35

    Google Scholar 

  • Tsoulis D (2012) Analytical computation of the full gravity tensor of a homogeneous arbitrarily shaped polyhedral source using line integrals. Geophysics 77(2):F1–F11

    Article  Google Scholar 

  • Tsoulis D, Petrovic S (2001) On the singularities of the gravity field of a homogeneous polyhedral body. Geophysics 66(2):535–539

    Article  Google Scholar 

  • Uieda L, Barbosa VCF (2012) 3D gravity gradient inversion by planting density anomalies. In: Eage conference and exhibition incorporating Spe Europec, pp 1–5

  • Vasco DW (1989) Resolution and variance operators of gravity and gravity gradiometry. Geophysics 54(7):889–899

    Article  Google Scholar 

  • Verweij JM, Boxem TAP, Nelskamp S (2016) 3D spatial variation in vertical stress in on- and offshore Netherlands; integration of density log measurements and basin modeling results. Mar Pet Geol 78:870–882

    Article  Google Scholar 

  • Werner RA (2017) The solid angle hidden in polyhedron gravitation formulations. J Geod 91:307–328

    Article  Google Scholar 

  • While J, Biegert E, Jackson A (2009) Generalized sampling interpolation of noisy gravity/gravity gradient data. Geophys J Int 178(2):638–650

    Article  Google Scholar 

  • Wu LY, Chen LW (2016) Fourier forward modeling of vector and tensor gravity fields due to prismatic bodies with variable density contrast. Geophysics 81(1):G13–G26

    Article  Google Scholar 

  • Yuan Y, Yu QL (2015) Edge detection in potential-field gradient tensor data by use of improved horizontal analytical signal methods. Pure appl Geophys 172(2):461–472

    Article  Google Scholar 

  • Zhang J, Jiang L (2017) Analytical expressions for the gravitational vector field of a 3-D rectangular prism with density varying as an arbitrary-order polynomial function. Geophys J Int 210(2):1176–1190

    Article  Google Scholar 

  • Zhang C, Mushayandebvu MF, Reid AB, Fairhead JD, Odegard ME (2000) Euler deconvolution of gravity tensor gradient data. Geophysics 65(2):512–520

    Article  Google Scholar 

  • Zhang J, Zhong BS, Zhou XX, Dai Y (2001) Gravity anomalies of 2-D bodies with variable density contrast. Geophysics 66(3):809–813

    Article  Google Scholar 

  • Zhdanov MS, Ellis R, Mukherjee S (2004) Three-dimensional regularized focusing inversion of gravity gradient tensor component data. Geophysics 69(4):1–4

    Article  Google Scholar 

  • Zhou XB (2009) 3D vector gravity potential and line integrals for the gravity anomaly of a rectangular prism with 3D variable density contrast. Geophysics 74(6):I43–I53

    Article  Google Scholar 

  • Zhou XB (2010) Analytic solution of the gravity anomaly of irregular 2D masses with density contrast varying as a 2D polynomial function. Geophysics 75(2):I11–I19

    Article  Google Scholar 

  • Zhou W (2015) Normalized full gradient of full tensor gravity gradient based on adaptive iterative Tikhonov regularization downward continuation. J Appl Geophys 118:75–83

    Article  Google Scholar 

  • Zwillinger D (2011) CRC standard mathematical tables and formulae, 32nd edn. CRC Press, Boca Raton

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 41074077 and 41230318) and the Key Research and Development Program of Shandong Province (Grant No. 2017GSF16103). We thank Editor in Chief Michael J. Rycroft and an anonymous reviewer for their constructive comments that greatly improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzhong Zhang.

Appendix: Solutions for Some Indefinite Integrals

Appendix: Solutions for Some Indefinite Integrals

We provide the solutions of some indefinite integrals, which are necessary for the derivation of the analytic expressions referred to above. In the solutions, we omit the integral constants. The notations here are consistent with those in the text body.

According to Eqs. (4) and (5) in García-Abdeslem (1992), we get

$$\int {\frac{1}{{r^{3} }}{\text{d}}x} = \frac{x}{{(y^{2} + z^{2} )r}}.$$
(56)

According to Eqs. (12) and (13) in Guo et al. (2004), we get

$$\int {\frac{1}{{(x^{2} + z^{2} )r}}{\text{d}}z} = - \frac{1}{xy}\arctan \frac{xy}{{x^{2} + z^{2} + rz}},$$
(57)
$$\int {\frac{1}{{(y^{2} + z^{2} )r}}{\text{d}}z} = - \,\frac{1}{xy}\arctan \frac{xy}{{y^{2} + z^{2} + rz}},$$
(58)
$$\int {\frac{1}{{(y^{2} + z^{2} )r}}dy} = - \frac{1}{xz}\arctan \frac{xz}{{y^{2} + z^{2} + ry}}.$$
(59)

According to Eqs. 20, 131, 141, 183 and 184 in the table of indefinite integrals from Zwillinger (2011), we get

$$\int {\frac{1}{r}{\text{d}}z} = \ln \left( {z + r} \right),$$
(60)
$$\int {\frac{{(x^{2} + z^{2} )^{k - 1} }}{r}{\text{d}}z^{2} } { = 2(} - 1 )^{k - 1} y^{2(k - 1)} r\sum\limits_{l = 0}^{k - 1} {\frac{{( - 1)^{l} (k - 1)!r^{2l} }}{{(2l + 1)l!(k - l - 1)!y^{2l} }}} ,$$
(61)
$$\int {\frac{1}{{(x^{2} + z^{2} )r}}{\text{d}}z^{2} } = \frac{2}{y}\left[ {\ln \sqrt {x^{2} + z^{2} } - \ln (y + r)} \right],$$
(62)
$$\int {\frac{{z^{2l} }}{r}dz} = \frac{{( - 1)^{l} (2l)!(x^{2} + y^{2} )^{l} }}{{2^{2l} (l!)^{2} }}\left[ {ln(z + r) + r\sum\limits_{q = 1}^{l} {\frac{{( - 1)^{q} q!(q - 1)!(2z)^{2q - 1} }}{{(2q)!(x^{2} + y^{2} )^{q} }}} } \right],$$
(63)
$$\int {\frac{{z^{2d + 1} }}{r}dz} = r\sum\limits_{q = 0}^{d} {\frac{{(2q)!(d!)^{2} }}{{(2d + 1)!(q!)^{2} }}} ( - 4x^{2} - 4y^{2} )^{d - q} z^{2q} .$$
(64)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, L., Liu, J., Zhang, J. et al. Analytic Expressions for the Gravity Gradient Tensor of 3D Prisms with Depth-Dependent Density. Surv Geophys 39, 337–363 (2018). https://doi.org/10.1007/s10712-017-9455-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-017-9455-x

Keywords

Navigation