Skip to main content
Log in

A topological classification of convex bodies

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

The shape of homogeneous, generic, smooth convex bodies as described by the Euclidean distance with nondegenerate critical points, measured from the center of mass represents a rather restricted class \({\mathcal {M}}_C\) of Morse–Smale functions on \({\mathbb {S}}^2\). Here we show that even \({\mathcal {M}}_C\) exhibits the complexity known for general Morse–Smale functions on \({\mathbb {S}}^2\) by exhausting all combinatorial possibilities: every 2-colored quadrangulation of the sphere is isomorphic to a suitably represented Morse–Smale complex associated with a function in \({\mathcal {M}}_C\) (and vice versa). We prove our claim by an inductive algorithm, starting from the path graph \(P_2\) and generating convex bodies corresponding to quadrangulations with increasing number of vertices by performing each combinatorially possible vertex splitting by a convexity-preserving local manipulation of the surface. Since convex bodies carrying Morse–Smale complexes isomorphic to \(P_2\) exist, this algorithm not only proves our claim but also generalizes the known classification scheme in Várkonyi and Domokos (J Nonlinear Sci 16:255–281, 2006). Our expansion algorithm is essentially the dual procedure to the algorithm presented by Edelsbrunner et al. (Discrete Comput Geom 30:87–10, 2003), producing a hierarchy of increasingly coarse Morse–Smale complexes. We point out applications to pebble shapes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Andreev, E.M.: Convex polyhedra in Lobachevsky spaces. Mat. Sb. (N.S.) 81(123), 445–478 (1970)

    MathSciNet  Google Scholar 

  2. Archdeacon, D., Hutchinson, J., Nakamoto, A., Negami, S., Ota, K.: Chromatic numbers of quadrangulations on closed surfaces. J. Graph Theory 37, 100–114 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, V.I.: Ordinary Differential Equations, 10th printing. MIT Press, Cambridge (1998)

    Google Scholar 

  4. Arnold, V.I. (ed.): Dynamical Systems V: Bifurcation Theory and Catastrophe Theory. Springer, Berlin (1994)

    Google Scholar 

  5. Bagatelj, V.: An inductive definition of the class of 3-connected quadrangulations of the plane. Discrete Math. 78, 45–53 (1989)

    Article  MathSciNet  Google Scholar 

  6. Bauer, U., Lange, C., Wardetzky, M.: Optimal topological simplification of discrete functions on surfaces. Discrete Comput. Geom. 47, 347–377 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bonnesen, T., Fenchel, W.: Theory of Convex Bodies. BCS Associates, Moscow (1987)

  8. Bloore, F.J.: The shape of pebbles. Math. Geol. 9, 113–122 (1977)

    Article  MathSciNet  Google Scholar 

  9. Bremer, P.T., Edelsbrunner, H., Hamann, B., Pascucci, V.: A multi-resolution data structure for two-dimensional Morse–Smale functions. In: Proceeding VIS ’03, pp. 139–146 (2003)

  10. Brinkmann, G., Greenberg, S., Greenhill, C., McKay, B.D., Thomas, R., Wollan, P.: Generation of simple quadrangulations of the sphere. Discrete Math. 305, 33–54 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Conway, J.H., Guy, R.: Stability of polyhedra. SIAM Rev. 11, 78–82 (1969)

    Article  Google Scholar 

  12. Dawson, R.: Monostatic simplexes. Amer. Math. Month. 92, 541–546 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dawson, R., Finbow, W.: What shape is a loaded die? Math. Intell. 22, 32–37 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dey, T.K., Li, K., Luo, C., Ranjan, P., Safa, I., Wang, Y.: Persistent heat signature for pose-oblivious matching of incomplete models. Comput. Graph. Forum 29, 1545–1554 (2010)

    Article  Google Scholar 

  15. Diestel, R.: Graph Theory, 3rd edn. Springer, Heidelberg (2005)

    MATH  Google Scholar 

  16. Domokos, G., Lángi, Z., Szabó, T.: On the equilibria of finely discretized curves and surfaces. Monatsh. Math. 168, 321–345 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Domokos, G., Sipos, A.Á., Szabó, T.: The mechanics of rocking stones: equilibria on separated scales. Math. Geosci. 44, 71–89 (2012)

    Article  Google Scholar 

  18. Domokos, G., Sipos, A.Á., Várkonyi, P.: Continuous and discrete models for abrasion processes. Period. Polytech. Arch. 40, 3–8 (2009)

    Article  Google Scholar 

  19. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangulation. ACM Trans. Graph. 25, 1057–1066 (2006)

    Article  Google Scholar 

  20. Edelsbrunner, H., Harer, J., Zomorodian, A.: Hierarchical Morse–Smale complexes for piecewise linear 2-manifolds. Discrete Comput. Geom. 30, 87–107 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Evans, L.: Partial Differential Equations, Graduate Texts in Mathematics 19. American Mathematical Society, Providence, RI (1998)

    Google Scholar 

  22. Ghomi, M.: The problem of optimal smoothing for convex functions. Proc. Amer. Math. Soc. 130, 2255–2259 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Gross, J.T., Yellen, J.: Graph Theory and Its Applications, 2nd edn. CRC Press, Boca Raton, FL (2006)

    MATH  Google Scholar 

  24. Gyulassy, A., Natarajan, V., Pascucci, V., Hamann, B.: Efficient computation of Morse–Smale complexes for three-dimensional scalar functions. IEEE Trans. Vis. Comput. Graph. 13, 1440–1447 (2007)

    Article  Google Scholar 

  25. Heath, T.I. (ed.): The Works of Archimedes. Cambridge University Press, Cambridge (1897)

    Google Scholar 

  26. Heppes, A.: A double-tipping tetrahedron. SIAM Rev. 9, 599–600 (1967)

    Article  Google Scholar 

  27. Hirsch, M.: Differential Topology, Graduate Texts in Mathematics 33. Springer, New York-Heidelberg (1976)

    Google Scholar 

  28. Kápolnai, R., Domokos, G.: Inductive generation of convex bodies. In: The 7th Hungarian–Japanese Symposium on Discrete Mathematics and Its Applications, pp. 170–178 (2011)

  29. Krapivsky, P.L., Redner, S.: Smoothing a rock by chipping. Phys. Rev. E 9 75(3 Pt 1), 031119 (2007)

    Article  Google Scholar 

  30. Negami, S., Nakamoto, A.: Diagonal transformations of graphs on closed surfaces. Sci. Rep. Yokohama Nat. Univ., Sec. I 40, 71–97 (1993)

    MathSciNet  Google Scholar 

  31. Poston, T., Stewart, J.: Catastrophe Theory and its Applications. Pitman, London (1978)

    MATH  Google Scholar 

  32. Roeder, R.K.W., Hubbard, J.H., Dunbar, W.D.: Andreev’s theorem on hyperbolic polyhedra. Ann. Inst. Fourier (Grenoble) 57(3), 825–882 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  33. Sipos, A.Á., Domokos, G., Wilson, A., Hovius, N.: A discrete random model describing bedrock erosion. Math. Geosci. 43, 583–591 (2011)

    Article  Google Scholar 

  34. Várkonyi, P.L., Domokos, G.: Static equilibria of rigid bodies: dice, pebbles and the Poincaré–Hopf Theorem. J. Nonlinear Sci. 16, 255–281 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zamfirescu, T.: How do convex bodies sit? Mathematica 42, 179–181 (1995)

    MathSciNet  MATH  Google Scholar 

  36. Zomorodian, A.: Topology for Computing. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

This research was supported by OTKA grant T104601. The authors thank an anonymous referee for suggesting substantial improvements to the paper. The authors are indebted to E. Makai Jun., G. Etesi and Sz. Szabó for their valuable comments on smooth approximations of continuous functions. Z. Lángi also acknowledges the support of the Fields Institute for Research in Mathematical Sciences, University of Toronto, Toronto ON, Canada, and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Lángi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domokos, G., Lángi, Z. & Szabó, T. A topological classification of convex bodies. Geom Dedicata 182, 95–116 (2016). https://doi.org/10.1007/s10711-015-0130-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0130-4

Keywords

Mathematics Subject Classification (2010)

Navigation