Skip to main content
Log in

Affine maps between CAT(0) spaces

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We study affine maps between CAT(0) spaces with cocompact group actions, and show that they essentially split as products of dilations and linear maps (on the Euclidean factor). This extends known results from the Riemannian case. Furthermore, we prove a splitting lemma for the Tits boundary of a CAT(0) space with cocompact group action, a variant of a splitting lemma for geodesically complete CAT(1) spaces by Lytchak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ballmann, W., Gromov, M., Schroeder, V.: Manifolds of Nonpositive Curvature. Vol. 61 of Progress in Mathematics. Birkhäuser Boston Inc., Boston, MA (1985)

  2. Balser, A., Lytchak, A.: Centers of convex subsets of buildings. Ann. Global Anal. Geom. 28, 201–209 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bosché, A.: Tits compact \({\rm CAT}(0)\) spaces. Preprint

  4. Bridson, M.R., Haefliger, A.: Metric Spaces of Non-Positive Curvature. Vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)

  5. Caprace, P.-E., Monod, N.: Isometry groups of non-positively curved spaces: structure theory. J. Topol. 2, 661–700 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Croke, C.B., Kleiner, B.: The geodesic flow of a nonpositively curved graph manifold. Geom. Funct. Anal. 12, 479–545 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daskalopoulos, G., Mese, C.: Harmonic maps from a simplicial complex and geometric rigidity. J. Differ. Geom. 78, 269–293 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Daskalopoulos, G., Mese, C.: Fixed point and rigidity theorems for harmonic maps into NPC spaces. Geom. Dedicata 141, 33–57 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daskalopoulos, G., Mese, C., Vdovina, A.: Superrigidity of hyperbolic buildings. Geom. Funct. Anal. 21, 905–919 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Foertsch, T., Lytchak, A.: The de Rham decomposition theorem for metric spaces. Geom. Funct. Anal. 18, 120–143 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gromov, M., Schoen, R.: Harmonic maps into singular spaces and \(p\)-adic superrigidity for lattices in groups of rank one. Inst. Hautes Études Sci. Publ. Math. 76, 165–246 (1992)

  12. Guralnik, D., Swenson, E.: A ‘transversal’ for minimal invariant sets in the boundary of a \({\rm CAT}(0)\) group. Trans. Amer. Math. Soc. (2012)

  13. Hitzelberger, P., Lytchak, A.: Spaces with many affine functions. Proc. Am. Math. Soc. 135, 2263–2271 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Izeki, H., Nayatani, S.: Combinatorial harmonic maps and discrete-group actions on Hadamard spaces. Geom. Dedicata 114, 147–188 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kleiner, B.: The local structure of length spaces with curvature bounded above. Math. Z. 231, 409–456 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kobayashi, S., Nomizu, K.: Foundations of differential geometry, Vol. I. Wiley Classics Library. Wiley, New York, 1996. Reprint of the 1963 original, A Wiley-Interscience Publication

  17. Leeb, B.: A characterization of irreducible symmetric spaces and Euclidean buildings of higher rank by their asymptotic geometry. Bonner Mathematische Schriften [Bonn Mathematical Publications], vol. 326, ii+42 pp. Universität Bonn, Mathematisches Institut, Bonn (2000)

  18. Lytchak, A.: Rigidity of spherical buildings and joins. Geom. Funct. Anal. 15, 720–752 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lytchak, A.: Affine images of Riemannian manifolds. Math. Z. 270, 809–817 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lytchak, A., Schroeder, V.: Affine functions on \({\rm CAT}(\kappa )\)-spaces. Math. Z. 255, 231–244 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matveev, V.S.: Hyperbolic manifolds are geodesically rigid. Invent. Math. 151, 579–609 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nikolaev, I.: The tangent cone of an Aleksandrov space of curvature \(\le \)K. Manuscr. Math. 86, 137–147 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ohta, S.-I.: Totally geodesic maps into metric spaces. Math. Z. 244, 47–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Papasoglu, P., Swenson, E.: Boundaries and JSJ decompositions of \({\rm CAT}(0)\)-groups. Geom. Funct. Anal. 19, 559–590 (2009)

    Article  MathSciNet  Google Scholar 

  25. Swenson, E.: On cyclic \({\rm CAT}(0)\) domains of discontinuity. Groups Geom. Dyn. 7, 737–750 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Dan Guralnik and Eric Swenson for their inspiring paper [12], and Russell Ricks and Ben Schmidt for discussions of this paper. Ricks in particular suggested the simple proof of Lemma 3.7 and the reference for Theorem 2.3. We also thank the referee for a thorough report. The first two authors held postdoctoral fellowships at the University of Michigan, and are thankful for the excellent working environment provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Spatzier.

Additional information

H. Bennett is Supported in part by an EAF Grant for the IBL Center at the University of Michigan

C. Mooney is Supported in part by the NSF EMSW21 Grant RTG-0602191 and a Caterpillar Fellowship

R. Spatzier is Supported in part by the NSF Grants DMS-0906085, DMS-1307164 and DMS-0932078 000, the latter while this author was in residence at MSRI in Berkeley during the Spring 2015 semester.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bennett, H., Mooney, C. & Spatzier, R. Affine maps between CAT(0) spaces. Geom Dedicata 180, 1–16 (2016). https://doi.org/10.1007/s10711-015-0087-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-015-0087-3

Keywords

Navigation