Skip to main content
Log in

Height reducing property of polynomials and self-affine tiles

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

A monic polynomial \({f(x)\in {\mathbb Z}[x]}\) is said to have the height reducing property (HRP) if there exists a polynomial \({h(x)\in {\mathbb Z}[x]}\) such that

$$f(x)h(x)=a_n x^n+a_{n-1}x^{n-1}+\cdots+a_1x\pm q,$$

where q = f(0), |a i | ≤ (|q| −1), i = 1, . . . , n and a n > 0. We show that any expanding monic polynomial f(x) has the height reducing property, improving a previous result in Kirat et al. (Discrete Comput Geom 31: 275–286, 2004) for the irreducible case. The proof relies on some techniques developed in the study of self-affine tiles. It is constructive and we formulate a simple tree structure to check for any monic polynomial f(x) to have the HRP and to find h(x). The property is used to study the connectedness of a class of self-affine tiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiyama S., Gjini N.: On the connectedness of self-affine attractors. Arch. Math. 82, 153–163 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akiyama S., Thuswaldner J.M.: A survey on topological properties of tiles related to number systems. Geom. Dedicata 109, 89–105 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bandt C., Gelbrich G.: Classification of self-affine lattice tilings. J. London Math. Soc. 50, 581–593 (1994)

    MathSciNet  MATH  Google Scholar 

  4. Deng, Q.R., Lau, K.S.: Connectedness of a class of planar self-sffine tiles. J. Math. Anal. Appl. (to appear)

  5. Duvall P., Keesling J., Vince A.: The Hausdorff dimension of the boundary of a self-similar tile. J. London Math. Soc. 61, 748–760 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Falconer K.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, London (1990)

    MATH  Google Scholar 

  7. Gabardo, J.-P., Yu X.: Natural tiling,lattice tiling and Lebesgue measure of integral self-affine tiles. J. London Math. Soc. (2) 74(1), 184–204 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gargantini I.: The numerical stability of the Schur-Cohn criterion. SIAM J. Numer. Anal. 8, 24–29 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  9. Garsia A.: Arithmetic properties of Bernoulli convolutions. Trans. Am. Math. Soc. 102, 409–432 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gröchenig K., Haas A.: Self-affine lattice tilings. J. Fourier Anal. Appl. 1, 131–170 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kigami J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  12. Kirat I., Lau K.-S.: On the connectedness of self-affine tiles. J. London Math. Soc. 62, 291–304 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kirat I., Lau K.-S., Rao H.: Expanding polynomials and Connectedness of self-affine tiles. Discrete Comput. Geom. 31, 275–286 (2004)

    MathSciNet  MATH  Google Scholar 

  14. Laarakker, A., Curry, E.: Diget sets for connected tiles via similar matrices I: dilation matrices with rational eigenvalues. (preprint)

  15. Lagarias J.C., Wang Y.: Self-affine tiles in \({{\mathbb R}^n}\) . Adv. Math. 121, 21–49 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Leung K.S., Lau K.S.: Disklikness of planar self-affine tiles. Trans. Am. Math. Soc. 359, 3337–3355 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Müller W., Thuswaldner J.M., Tichy R.F.: properties of number systems. Period. Math. Hungar. 42(1–2), 51–68 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Scheicher K., Thuswaldner J.M.: Canonical number systems, counting automata and fractals. Math. Proc. Cambridge Philos. Soc. 133(1), 163–182 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. Pantelis A.D.: Monic polynomials in \({{\mathbb Z}[x]}\) with roots in the unit disc. Am. Math. Mon. 108(3), 253–257 (2001)

    Article  MATH  Google Scholar 

  20. Vince, A.: Digit tiling of Euclidean space. Directions in mathematical quasicrystals, 329–370, CRM Monogr. Ser., 13, Am. Math. Soc. Providence, RI (2000)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-Gang He.

Additional information

The research is partially supported by CUHK Focus Investment Schems and the National Natural Science Foundation of China 10771082 and 10871180.

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, XG., Kirat, I. & Lau, KS. Height reducing property of polynomials and self-affine tiles. Geom Dedicata 152, 153–164 (2011). https://doi.org/10.1007/s10711-010-9550-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-010-9550-3

Keywords

Mathematics Subject Classification (2000)

Navigation