, Volume 136, Issue 1, pp 69–78 | Cite as

Preservation of duplicate genes by originalization

  • Cheng Xue
  • Yunxin Fu


Neofunctionalization, subfunctionalization and increasing gene dosage were proposed to be the possible ways to explain duplicate-gene preservation in previous studies. However, in some natural populations, such as yeast Saccharomyces cerevisiae, a considerable proportion of the duplicate genes originated from ancient whole genomic duplication (WGD) is preserved till now, which cannot be sufficiently explained by these mechanisms. In this article, we present another possible way to explain this conundrum—originalization, by which duplicate genes are both preserved intact at a high frequency in the population under only purifying selection. With approximate equal rates of mutation at the two duplicated loci, analytical, numerical and simulation results consistently show that the mean time to nonfunctionalization for unlinked haploinsufficient gene duplication might become markedly prolonged, which results from originalization. These theoretical results imply that originalization might be an alternative effective and temporary way of preserving duplicate genes.


Gene duplication Originalization Recombination Selection Preservation 



This work is partly supported by funds from Yunan University and we acknowledge assistance from the Center for High Performance Computation of Yunnan University. We thank anonymous reviewers for many valuable comments and also thank Drs. Huatao Deng, Tianhong Xu, Shuqun Liu, Yang Shen, Xianda Lu, Ren Huang, Suhua Shi, Lianghu Qu, Yupeng Cun and Michael Lynch for their assistance and Sara Barton for editorial review. The junior author also graciously acknowledges his fellowships from GuangDong Institute for Monitoring Laboratory Animals and Tarim Agricultural University.


  1. Byrne KP, Wolfe KH (2005) The yeast gene order browser: combing curated homology and syntenic context reveals gene fate in polyploid species. Genome Res 15:1456–1461. doi: 10.1101/gr.3672305 PubMedCrossRefGoogle Scholar
  2. Clement Y, Tavares R, Marais GAB (2006) Does lack of recombination enhance asymmetric evolution among duplicate genes? Insight from the Drosophila melanogaster genome. Gene 385:89–95. doi: 10.1016/j.gene.2006.05.032 PubMedCrossRefGoogle Scholar
  3. Deutschbauer AM, Jaramillo DF, Proctor M et al (2005) Mechanisms of haploinsufficiency revealed by genome-wide profiling in yeast. Genetics 169:1915–1925. doi: 10.1534/genetics.104.036871 PubMedCrossRefGoogle Scholar
  4. Ferris SD, Whitt GS (1979) Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:267–317. doi: 10.1007/BF01732026 PubMedCrossRefGoogle Scholar
  5. Force A, Lynch M, Pickett FB et al (1999) Preservation of duplicate genes by complementary, degenerative mutation. Genetics 151:1531–1545PubMedGoogle Scholar
  6. He X, Zhang J (2005) Rapid subfunctionalization accompanied by prolonged and substantial neofunctionalization in duplicate gene evolution. Genetics 169:1157–1164. doi: 10.1534/genetics.104.037051 PubMedCrossRefGoogle Scholar
  7. Hooper SD, Berg OG (2003) On the nature of gene innovation: duplication patterns in microbial genomes. Mol Biol Evol 20:945–954. doi: 10.1093/molbev/msg101 PubMedCrossRefGoogle Scholar
  8. Hughes MK, Hughes AL (1993) Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360–1369PubMedGoogle Scholar
  9. Khazanie RG, McKean HE (1966a) A Mendelian Markov process with binomial transition probabilities. Biometrika 53:37–48PubMedGoogle Scholar
  10. Khazanie RG, McKean HE (1966b) A Mendelian Markov process with multinomial transition probabilities. J Appl Probab 3:353–364. doi: 10.2307/3212124 CrossRefGoogle Scholar
  11. Kimura M (1955a) Solution of a process of random genetic drift with a continuous model. Proc Natl Acad Sci USA 41:144–150. doi: 10.1073/pnas.41.3.144 PubMedCrossRefGoogle Scholar
  12. Kimura M (1955b) Stochastic processes and distribution of gene frequencies under the natural selection. Cold Spring Harb Symp Quant Biol 20:33–53PubMedGoogle Scholar
  13. Kimura M, King JL (1979) Fixation of a deleterious allele at one of two “duplicate” loci by mutation pressure and random drift. Proc Natl Acad Sci USA 76:2858–2861. doi: 10.1073/pnas.76.6.2858 PubMedCrossRefGoogle Scholar
  14. Kincaid D, Cheney W (2002) Numerical analysis: mathematics of scientific computing, 3rd edn. Brooks/Cole Publication Co, Pacific GroveGoogle Scholar
  15. Kondrashov FA, Koonin EV (2004) A common framework for understanding the origin of genetic dominance and evolutionary fates of gene duplicates. Trends Genet 20:287–291. doi: 10.1016/j.tig.2004.05.001 PubMedCrossRefGoogle Scholar
  16. Li W-H (1980) Rate of gene silencing at duplicate loci: a theoretical study and interpretation of data from tetraploid fishes. Genetics 95:237–258PubMedGoogle Scholar
  17. Li W-H, Yang J, Gu X (2005) Expression divergence between duplicate genes. Trends Genet 21:602–607PubMedCrossRefGoogle Scholar
  18. Long M-Y, Betran M, Thornton K et al (2003) The origin of new genes: glimpses from the young and old. Nat Rev Genet 4:865–875. doi: 10.1038/nrg1204 PubMedCrossRefGoogle Scholar
  19. Lynch M, Conery JS (2004) The origins of genomic complexity. Science 302:1401–1404. doi: 10.1126/science.1089370 CrossRefGoogle Scholar
  20. Lynch M, Force A (2000) The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459–473PubMedGoogle Scholar
  21. Lynch M, Katju V (2004) The altered evolutionary trajectories of gene duplicates. Trends Genet 20(11):544–549. doi: 10.1016/j.tig.2004.09.001 PubMedCrossRefGoogle Scholar
  22. Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci USA 100:15682–15687. doi: 10.1073/pnas.2535513100 PubMedCrossRefGoogle Scholar
  23. Ohno S (1970) Evolution by gene duplication. Springer-Verlag, New YorkGoogle Scholar
  24. Papp B, Pail C, Hurst LD (2003) Dosage sensitivity and the evolution of gene families in yeast. Nature 424:194–197. doi: 10.1038/nature01771 PubMedCrossRefGoogle Scholar
  25. Rice SH (2004) Evolutionary theory: mathematical and conceptual foundations. Sinauer Associates Inc, SunderlandGoogle Scholar
  26. Takahata N, Maruyama T (1979) Polymorphism and loss of duplicate gene expression: a theoretical study with application to the tetraploid fish. Proc Natl Acad Sci USA 76:4521–4525. doi: 10.1073/pnas.76.9.4521 PubMedCrossRefGoogle Scholar
  27. Walsh JB (2003) Population-genetic models of the fates of duplicate genes. Genetica 118:279–294. doi: 10.1023/A:1024194802441 PubMedCrossRefGoogle Scholar
  28. Wang Y, Rannala B (2004) A novel solution for the time-dependent probability of gene fixation or loss under natural selection. Genetics 168:1081–1084. doi: 10.1534/genetics.104.027797 PubMedCrossRefGoogle Scholar
  29. Watterson GA (1983) On the time for gene silencing at supplicate loci. Genetics 105:745–766PubMedGoogle Scholar
  30. Wolfe KH, Shields DC (1997) Molecular evidence for an ancient duplication of the entire yeast genome. Nature 387:708–713. doi: 10.1038/42711 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2008

Authors and Affiliations

  1. 1.College of Life SciencesUniversity of Sun Yet-SenGuangzhouChina
  2. 2.GuangDong Institute for Monitoring Laboratory AnimalsGuangzhouChina
  3. 3.Laboratory for Conservation and Utilization of Bio-ResourcesYunnan UniversityYunnanChina
  4. 4.Human Genetics Center, School of Public HealthUniversity of Texas at HoustonHoustonUSA

Personalised recommendations