Skip to main content
Log in

Combination of Power Function and Log-Linear Models to Estimate Pile Setup

  • Original Paper
  • Published:
Geotechnical and Geological Engineering Aims and scope Submit manuscript

Abstract

This paper presents a new approach of estimating pile setup starts from the end-of-drive (EOD) resistance by the use of a power function model followed by a log-linear function. Often pile setup is estimated using the Skov and Denver(in: Proceedings of the 3rd international conference on the application of stress-wave theory to piles, Canada, 1988) model, which requires knowing the pile resistance at a reference time (to). This requires additional effort for testing the pile at the reference time (to). This effort may cause delay in the foundation construction and thus increasing the cost of construction. Pile load testing program was conducted on seven 914 (36 in.) square close-ended prestressed concrete (PSC) test piles at the Caminada Bay bridge project in coastal Louisiana to develop a methodology to estimate pile setup effectively starting from EOD resistance. Several dynamic load tests (DLTs) were performed on each test pile, with waiting periods of 60 min to 55 days after installation, to measure the magnitude and rate of setup. Static load tests (SLTs) were also performed at the end of the load testing program to validate the results of dynamic load tests. The load testing results showed that the total resistance increased up to 12 times of the EOD resistances after 28 days from EOD. The Skov and Denver (1988) setup parameter “A” was calculated for each test pile using different initial reference times (to). The results showed that the setup parameter “A” was highly variable and uncertain for to less than 1 day. This paper proposes a new power pile setup model that can be used to estimate pile setup immediately after EOD to the initial reference time, to, which is usually 1 day for a log-linear model. The proposed model was validated using results from published case studies for various geological conditions, which shows that the results of the model effectively match the setup test results within a small tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abu-Farsakh M, Haque MdN, Tsai C (2016) A full-scale field study for performance evaluation of axially loaded large-diameter cylinder piles with pipe piles and PSC piles. Acta Geotech. https://doi.org/10.1007/s11440-016-0498-9

    Google Scholar 

  • Abu-Farsakh M, Haque MdN, Chen Q (2017) Experimental study to evaluate the effect of consolidation behavior on pile setup. Geotech Test J. https://doi.org/10.1520/GTJ20160071

    Google Scholar 

  • Axelsson G (2000) Long term set-up of piles in sand. Doctoral Thesis, Royal Institute of Technology, Stockholm, Sweden

  • Bullock PJ, Schmertmann JH, McVay MC, Townsend FC (2005) Side shear setup I: test piles driven in Florida. J Geotech Geoenviron Eng 13:292–300

    Article  Google Scholar 

  • Chen Q, Haque MdN, Abu-Farsakh M, Fernandez BA (2014) Field investigation of pile setup in mixed soil. Geotech Test J 37(2):268–281

    Article  Google Scholar 

  • Chow FC, Jardine RJ, Nauroy JF, Brucy F (1997) Time related increase in shaft capacities of driven piles in sand. Geotechnique 47(2):353–361

    Article  Google Scholar 

  • Davisson MT (1972) High capacity piles. In: Proceedings of the soil mechanics lecture series on innovations in foundation construction, ASCE, Reston, VA, pp 81–112

  • Fellenius BH (2014) Pile aging in cohesive soil-Discussion. J Geotech Geoenviron Eng 139(9):1620–1624

    Google Scholar 

  • Fellenius BH, Riker RE, O’Brien AJ, Tracy GR (1989) Dynamic and static testing in soil exhibiting set-up. J Geotech Eng 115(7):984–1001

    Article  Google Scholar 

  • Haque MdN, Chen Q, Abu-Farsakh M, Tsai C (2014) Effects of pile size on set-up behavior of cohesive soils. In: Proceedings of geo-congress 2014, geocharacterization and modeling for sustainability, 23–26 Feb, GSP No. 234. Georgia, pp 1743–1749

  • Haque MdN, Abu-Farsakh M, Tsai C (2016a) Field investigation to evaluate the effects of pile installation sequence on pile set-up behavior for instrumented test piles. Geotech Test J 39(5):769–785

    Article  Google Scholar 

  • Haque MdN, Abu-Farsakh M, Zhang Z, Okeil A (2016b) Developing a model to estimate pile setup for individual soil layers on the basis of piezocone penetration test data. J Transp Res Board No 2579:17–31

    Article  Google Scholar 

  • Haque MdN, Abu-Farsakh M, Tsai C, Zhang Z (2016c) Load-testing program to evaluate pile-setup behavior for individual soil layers and correlation of setup with Soil properties. J Geotech Geoenviron Eng (ASCE) 143(4):1–19

    Google Scholar 

  • Karlsrud K, Clausen CJF, Aas PM (2005) Bearing capacity of driven piles in clay, the NGI approach. In: Proceedings of the 1st international symposium on frontiers in offshore geotechnics, Taylor & Francis, Perth, pp 775–782

  • Komurka VE, Wagner AB, Edil TB (2003) Estimating soil/pile set-up. Wisconsin Highway Research Prog. #0092-00-14, Wisconsin Department of Transportation

  • Lee W, Kim D, Salgado R, Zaheer M (2010) Setup of driven piles in layered soil. Soils Found 50(5):585–598

    Article  Google Scholar 

  • Lim JK, Lehane BM (2014) Characterisation of the effects of time on the shaft friction of displacement piles in sand. Geotechnique 64(6):476–485

    Article  Google Scholar 

  • Long JH, Kerrigan JA, Wysockey M (1999) Measured time effects for axial capacity of driven piling. J Transp Res Board No 1663:8–15

    Article  Google Scholar 

  • Lutful K, Decapite K (2011) Prediction of pile set-up for Ohio soils. Report No FHWA/OH-2011/3

  • McVay MC, Schmertmann J, Townsend F, Bullock P (1999) Pile friction freeze: a field investigation study. Research Report No. WPI 0510632, Vol. 1

  • Mesri G, Feng TW, Benak JM (1990) Postdensification penetration resistance of clean sands. J Geotech Eng 116(7):1095–1115

    Article  Google Scholar 

  • Ng KW, Roling M, AbdelSalam SS, Suleiman MT, Sritharan S (2013) Pile set-up in cohesive soil. II: analytical quantifications and design recommendations. J Geotech Geoenviron Eng 139(2):210–222

    Article  Google Scholar 

  • Pei J, Wang Y (1986) Practical experiences on pile dynamic measurement in Shnaghai. In: Proceedings of the international conference on deep foundations, China Building Industry Press, Beijing, pp 2.36–2.41

  • Rausche MF, Robinson B, Likins G (2004) On the prediction of long term pile capacity from End-Of-Driving information. In: Proceedings of the current practices and future trends in deep foundation, GSP No. 125, CA, pp 77–95

  • Schmertmann JH (1991) The mechanical aging of soils. J Geotech Eng 117(9):1288–1330

    Article  Google Scholar 

  • Skov R, Denver H (1988) Time dependence of bearing capacity of piles. In: Proceedings of the 3rd international conference on the application of stress-wave theory to piles, Canada, pp 879–888

  • Steward E, Wang X (2011) Predicting pile setup (freeze): a new approach considering soil aging and pore pressure dissipation. In: Proceedings of the geo-frontier conference of advances of geotechnical engineering, Dallas, TX, pp 11–19

  • Svinkin MR (1996) Setup and relaxation in glacial sand-discussion. J Geotech Eng 122(4):319–321

    Article  Google Scholar 

  • Thompson WR III, Held L, Saye S (2009) Test pile program to determine axial capacity and pile set-up for the Biloxi Bay Bridge. DFI J 3:13–22

    Google Scholar 

  • Titi HH (1996) The increase in shaft capacity with time for friction piles driven into saturated clay. Ph.D. Dissertation, Department of Civil and Environmental Engineering, Louisiana State University, Baton Rouge, Louisiana

  • Titi HH, Wathugala GW (1999) Numerical procedure for predicting pile capacity setup/freeze. J Transp Res Board No 1663:25–32

    Article  Google Scholar 

  • Wang YH, Gao Y (2013) Mechanisms of Aging-Induced modulus changes in sand with inherent fabric anisotropy. J Geotech Geoenviron Eng 139(9):1590–1603

    Article  Google Scholar 

  • Yan WM, Yuen KV (2010) Prediction of pile setup in clays and sands. IOP Conf Ser Mater Sci Eng 10:012104

    Article  Google Scholar 

  • Yang S, Andersen KH (2016) Thixotropy of marine clays. Geotech Test J 39(2):331–339

    Article  Google Scholar 

Download references

Acknowledgements

This research project is funded by the Louisiana Department of Transportation and Development (State Project Number: 736-99-1732) and Louisiana Transportation and Research Center (LTRC Project No. 11-2GT). The authors would like to extend their appreciations to James Melton for providing the assistance in CAPWAP® analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murad Y. Abu-Farsakh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abu-Farsakh, M.Y., Haque, M.N., Tsai, C. et al. Combination of Power Function and Log-Linear Models to Estimate Pile Setup. Geotech Geol Eng 36, 3235–3253 (2018). https://doi.org/10.1007/s10706-018-0534-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10706-018-0534-7

Keywords

Navigation