Skip to main content

Advertisement

Log in

Prediction of multi-cracking in sub-micron films using the coupled criterion

  • Original Paper
  • Published:
International Journal of Fracture Aims and scope Submit manuscript

Abstract

Sub-micron films deposited on a flexible substrate are now commonly used in electronic industry. The main damaging mode of these systems is a multi-cracking of the film under the action of thermal and mechanical stresses. This multi-cracking phenomenon is described using the coupled criterion based on the simultaneous fulfilment of an energy and a stress criteria. The coupled criterion is implemented in a representative volume element and it allows to decide whether the stress or the energy condition governs the cracking mechanism. It is found that the energy conditions predominates for very thin films whereas the stress condition can take place for thicker films. The initial density of cracks is determined and is in good agreement with the experimental measures. Further subdivisions, when increasing the load, are also predicted. Moreover, under some conditions, a master curve can rule the density of cracks function of the applied strain, showing a good agreement between predictions and experiments for a wide range of film thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  • Ambrico JM, Begley MR (2002) The role of initial flaw size, elastic compliance and plasticity in channel cracking of thin films. Thin Solid Films 419:144–153

    Article  Google Scholar 

  • Andersons J, Modniks J, Leterrier Y, Tornare G, Dumont P, Manson J-AE (2008) Evaluation of toughness by finite fracture mechanics from crack onset strain of brittle coatings on polymers. Theor Appl Fract Mech 49:151–157

    Article  Google Scholar 

  • Beuth JL, Klingbeil NW (1996) Cracking of thin films bonded to elastic-plastic substrates. J Mech Phys Solids 44:1411–1428

    Article  Google Scholar 

  • Bordet H, Ignat M, Dupeux M (1998) Analysis of the mechanical response of film on substrate systems presenting rough interfaces. Thin Solid Films 315:207–213

    Article  Google Scholar 

  • Chen Z, Cotterell B, Wang W (2002) The fracture of brittle thin films on compliant substrates in flexible displays. Eng Fract Mech 69:597–603

    Article  Google Scholar 

  • Crawford GP (2005) Flexible flat panel displays. Wiley series in display technology. Wiley, Hoboken

    Book  Google Scholar 

  • Evans AG, Hutchinson GW (1995) The thermomechanical integrity of thin films and multi-layers, Acta Metal Mater 43:2507–2530

    Article  Google Scholar 

  • Freund LB, Suresh S (2004) Thin film materials. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Fu Y, Zhang XC, Xuan FZ, Tu ST, Wang ZD (2013) Multiple cracking of thin films due to residual stress combined with bending stress. Comput Mater Sci 73:113–119

    Article  Google Scholar 

  • Hashin Z (1996) Finite thermoelastic fracture criterion with application to laminate cracking analysis. J Mech Phys Solids 44:1129–1145

    Article  Google Scholar 

  • He MY, Hutchinson JW (1989) Crack deflection at an interface between dissimilar elastic materials. Int J Solids Struct 25:1053–1067

    Article  Google Scholar 

  • Hsueh CH, Yanaka M (2003) Multiple film cracking in film/substrate systems with residual stresses and unidirectional loading. J Mater Sci 38:1809–1817

    Article  Google Scholar 

  • Hu MS, Evans AG (1989) The cracking and decohesion of thin films on ductile substrates. Acta Metall 37:917–925

    Article  Google Scholar 

  • Jansson NE, Leterrier Y, Manson J-AE (2006a) Modeling of multiple cracking and decohesion of a thin film on a polymer substrate. Eng Fract Mech 73:2614–2626

    Article  Google Scholar 

  • Jansson NE, Leterrier Y, Medico L, Manson JAE (2006b) Calculation of adhesive and cohesive fracture toughness of a thin brittle coating on a polymer substrate. Thin Solids Films 515:2097–2105

    Article  Google Scholar 

  • Leguillon D (2002) Strength or toughness? A criterion for crack onset at a notch. Eur J Mech A/Solids 21:61–72

    Article  Google Scholar 

  • Leguillon D, Sanchez-Palencia E (1992) Fracture in heterogeneous materials, weak and strong singularities. In: Ladeveze P, Zienkiewicz OC (eds) New advances in computational structural mechanics, vol 32. Studies in applied mechanics. Elsevier, Amsterdam, pp 423–434

    Google Scholar 

  • Leguillon D, Martin E (2014) Mathematical methods and models in composites, computational and experimental methods in structures. In: Mantic V (ed) Crack nucleation at stress concentration points in composite materials—application to the crack deflection by an interface. Imperial College Press, London, pp 401–424

    Google Scholar 

  • Leguillon D, Martin E, Sevecek O, Bermejo R (2015) Application of the coupled stress-energy criterion to predict the fracture behaviour of layered ceramics designed with internal compressive stresses. Eur J Mech A/Solids 54:94–104

    Article  Google Scholar 

  • Leguillon D, Lafarie-Frenot MC, Pannier Y, Martin E (2016) Prediction of the surface cracking pattern of an oxidized polymer induced by residual and bending stresses. Int J Solids Struct 91:89–101

    Article  Google Scholar 

  • Leguillon D, Li J, Martin E (2017) Multi-cracking in brittle thin layers and coatings using a FFM model. Eur J Mech A/Solids 63:14–21

    Article  Google Scholar 

  • Ramsey PM, Chandler HW, Page TF (1991) Bending test to estimate through-thickness strength and interfacial shear strength in coated systems. Thin Solid Films 201:81–89

    Article  Google Scholar 

  • Thouless MD (1990) Crack spacing in brittle films on elastic substrate. J Am Ceram Soc 73:2144–2146

    Article  Google Scholar 

  • Timm DH, Guzina BB, Voller VR (2003) Prediction of thermal crack spacing. Int J Solids Struct 40:125–142

    Article  Google Scholar 

  • Weissgraeber P, Leguillon D, Becker W (2016) A review of finite fracture mechanics: crack initiation at singular and non-singular stress-raisers. Arch Appl Mech 86:375–401

    Article  Google Scholar 

  • Yanaka M, Miyamoto T, Tsukahara Y, Takeda N (1999) In situ observation and analysis of multiple cracking phenomena in thin glass layers deposited on polymer films. Compos Interfaces 6:409–424

    Article  Google Scholar 

  • Ye T, Suo Z, Evans AG (1992) Thin film cracking and the role of substrate and interface. Int J Solids Struct 29:2639–2648

    Article  Google Scholar 

  • Zhang XC, Xuan FZ, Zhang YK, Tu ST (2008) Multiple film cracking in film/substrate systems with mismatch strain and applied strain. J Appl Phys 104:063520

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominique Leguillon.

Appendices

Appendix 1

1.1 Special solutions

E is the Young modulus and \(\nu \) the Poisson ratio, the index f holds for film s for substrate, l is the half length of the RVE.

  • Tensile loading

    $$\begin{aligned} \left\{ {\begin{array}{l} V_1^\mathrm{t} =\frac{l-x_1 }{l}\hbox { (}e=1\hbox {); }\sigma _{12}^\mathrm{t} =\sigma _{22}^\mathrm{t} =0 \\ \sigma _{11}^\mathrm{t} =\frac{E_\mathrm{f} }{1-\nu _\mathrm{f}^2 }\varepsilon _{11}^\mathrm{t} =-\frac{1}{l}\frac{E_\mathrm{f} }{1-\nu _\mathrm{f}^2 }\hbox { in the film} \\ \sigma _{11}^\mathrm{t} =\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\varepsilon _{11}^\mathrm{t} =-\frac{1}{l}\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\hbox { in the substrate} \\ \end{array}} \right. \end{aligned}$$
    (28)
  • Bending loading

    $$\begin{aligned} \begin{array}{l} \left\{ {\begin{array}{l} V_1^\mathrm{b} =x_2 \frac{l-x_1 }{l}\hbox { (}m=1\hbox {); }\sigma _{12}^\mathrm{b} =\sigma _{22}^\mathrm{b} =0 \\ \sigma _{11}^\mathrm{b} =\frac{E_\mathrm{f} }{1-\nu _\mathrm{f}^2 }\varepsilon _{11}^\mathrm{b} =-\frac{x_2 }{l}\frac{E_\mathrm{f} }{1-\nu _\mathrm{f}^2 }\hbox { in the film} \\ \sigma _{11}^\mathrm{b} =\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\varepsilon _{11}^\mathrm{b} =-\frac{x_2 }{l}\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\hbox { in the substrate} \\ \end{array}} \right. \\ \\ \end{array} \end{aligned}$$
    (29)
  • Constrained thermoelastic loading

    $$\begin{aligned} \left\{ {\begin{array}{l} V_1^\mathrm{c} =0; \sigma _{12}^\mathrm{c} =\sigma _{22}^\mathrm{c} =0 \\ \sigma _{11}^\mathrm{c} =0\hbox { in the film} \\ \sigma _{11}^\mathrm{c} =-\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\varepsilon _{11}^{\mathrm{in}} =-\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\alpha \Delta \theta \hbox { in the substrate} \\ \end{array}} \right. \end{aligned}$$
    (30)

    \(\Delta \theta \) is the temperature change and \(\alpha \) is the coefficient of thermal expansion, it is taken 0 in the film in both examples.

Appendix 2

The \(2\times 2\) system (16) when there is no crack in the film is

$$\begin{aligned} \left\{ {\begin{array}{l} R(\underline{V}^{\mathrm{t}})=\frac{1}{l}\left( {\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }h+\frac{E_\mathrm{f} }{1-\nu _\mathrm{f}^2 }t} \right) \\ M(\underline{V}^{\mathrm{t}}) \,{=}\,R(\underline{V}^{\mathrm{b}}){=}\frac{1}{2l}\left( {\frac{E_\mathrm{f} }{1-\nu _\mathrm{f}^2 }-\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }} \right) \left[ {\left( {\frac{h+t}{2}} \right) ^{2}-\left( {\frac{h-t}{2}} \right) ^{2}} \right] \\ M(\underline{V}^{\mathrm{b}})=\frac{1}{3l}\left[ \frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\left( {\left( {\frac{h+t}{2}} \right) ^{3}+\left( {\frac{h-t}{2}} \right) ^{3}} \right) \right. \\ \qquad \quad \qquad \left. +\,\frac{E_\mathrm{f} }{1-\nu _\mathrm{f}^2 }\left( {\left( {\frac{h+t}{2}} \right) ^{3}-\left( {\frac{h-t}{2}} \right) ^{3}} \right) \right] \\ R(\underline{V}^{\mathrm{c}})=h\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\alpha \Delta \theta \\ M(\underline{V}^{\mathrm{c}})=-\frac{1}{2}th\frac{E_\mathrm{s} }{1-\nu _\mathrm{s}^2 }\alpha \Delta \theta \\ \end{array}} \right. \end{aligned}$$
(31)

t is the film thickness and h the substrate height.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leguillon, D., Martin, E. Prediction of multi-cracking in sub-micron films using the coupled criterion. Int J Fract 209, 187–202 (2018). https://doi.org/10.1007/s10704-017-0255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10704-017-0255-6

Keywords

Navigation