International Journal of Fracture

, Volume 209, Issue 1–2, pp 77–90 | Cite as

Influence of heterogeneities on crack propagation

  • Okan Yılmaz
  • Jérémy Bleyer
  • Jean-François Molinari
Original Paper


The influence of material heterogeneities is studied in the context of dynamic failure. We consider a pre-strained plate problem, the homogeneous case of which has been widely studied both experimentally and numerically. This setup is used to isolate the effects of the elastic field resulting from pre-straining and stress wave interactions throughout the crack propagation by adding stiffer and denser regions in the plate. While the crack tip is pushed away by stiffer inclusions, it is attracted to the denser ones. With the presence of denser media, only a portion of the total elastic energy in the system is effectively used to drive crack propagation, leading to a drop in the velocity of its tip in comparison to the homogeneous case. Crack branching is then observed at velocities much lower than the limiting velocity of the material, questioning the validity of crack velocity to be a criterion for crack branching. Instead, we introduce an effective stored energy to analyze the crack velocity and the emergence of crack branching instabilities.


Pre-strained plate Dynamic fracture Cohesive elements Crack propagation Branching 


  1. Albertini G, Kammer D (2017) Supershear transition of dynamic mode II fracture in heterogeneous elastic media. J Mech Phys Solids (submitted)Google Scholar
  2. Barenblatt G (1962) The mathematical theory of equilibrium cracks in brittle fracture. Adv Appl Mech 7(1):55–129CrossRefGoogle Scholar
  3. Belytschko T, Liu WK, Moran B, Elkhodary K (2014) Nonlinear finite elements for continua and structures, 2nd edn. Wiley, HobokenGoogle Scholar
  4. Ben-Zion Y (2008) Collective behavior of earthquakes and faults: Continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev Geophys 46(4):RG4006Google Scholar
  5. Bleyer J, Molinari JF (2017) Microbranching instability in phase-field modelling of dynamic brittle fracture. Appl Phys Lett 110(15):151903CrossRefGoogle Scholar
  6. Bleyer J, Roux-Langlois C, Molinari JF (2017) Dynamic crack propagation with a variational phase-field model: limiting speed, crack branching and velocity-toughening mechanisms. Int J Fract 204:79–100Google Scholar
  7. Bobaru F, Zhang G (2015) Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int J Fract 196(1–2):59–98CrossRefGoogle Scholar
  8. Bouchbinder E, Goldman T, Fineberg J (2014) The dynamics of rapid fracture: instabilities, nonlinearities and length scales. Rep Prog Phys 77(4):046501CrossRefGoogle Scholar
  9. Camacho G, Ortiz M (1996) Computational modelling of impact damage in brittle materials. Int J Solids Struct 33:2899–2938CrossRefGoogle Scholar
  10. Chen W, Ravichandran G (1996) Static and dynamic compressive behavior of aluminum nitride under moderate confinement. J Am Ceram Soc 79(3):579–584CrossRefGoogle Scholar
  11. Clark A, Irwin G (1966) Crack-propagation behaviors. Exp Mech 6(6):321–330CrossRefGoogle Scholar
  12. Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11(2):215–234CrossRefGoogle Scholar
  13. Cox B, Gao H, Gross D, Rittel D (2005) Modern topics and challenges in dynamic fracture. J Mech Phys Solids 53(3):565–596CrossRefGoogle Scholar
  14. Dugdale D (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104CrossRefGoogle Scholar
  15. Fineberg J, Bouchbinder E (2015) Recent developments in dynamic fracture: some perspectives. Int J Fract 196(1–2):33–57CrossRefGoogle Scholar
  16. Fineberg J, Gross S, Marder M, Swinney H (1991) Instability in dynamic fracture. Phys Rev Lett 67(4):457CrossRefGoogle Scholar
  17. Fineberg J, Gross S, Marder M, Swinney H (1992) Instability in the propagation of fast cracks. Phys Rev B 45(10):5146CrossRefGoogle Scholar
  18. Fisher D, Dahmen K, Ramanathan S, Ben-Zion Y (1997) Statistics of earthquakes in simple models of heterogeneous faults. Phys Rev Lett 78(25):4885CrossRefGoogle Scholar
  19. Fleck N, Deshpande V, Ashby M (2010) Micro-architectured materials: past, present and future. In: Proceedings of the royal society of London a: mathematical, physical and engineering sciences, vol 466. The Royal Society, pp 2495–2516Google Scholar
  20. Goldman T, Livne A, Fineberg J (2010) Acquisition of inertia by a moving crack. Phys Rev Lett 104(11):114301CrossRefGoogle Scholar
  21. Ha Y, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1–2):229–244CrossRefGoogle Scholar
  22. Hillerborg A, Modeer M, Petersson P (1976) Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem Concr Res 6:773–782CrossRefGoogle Scholar
  23. Johnson J, Holloway D (1968) Microstructure of the mist zone on glass fracture surfaces. Philos Mag 17(149):899–910CrossRefGoogle Scholar
  24. Livne A, Bouchbinder E, Fineberg J (2008) Breakdown of linear elastic fracture mechanics near the tip of a rapid crack. Phys Rev Lett 101(26):264–301CrossRefGoogle Scholar
  25. Livne A, Bouchbinder E, Svetlizky I, Fineberg J (2010) The near-tip fields of fast cracks. Science 327(5971):1359–1363CrossRefGoogle Scholar
  26. Livne A, Cohen G, Fineberg J (2005) Universality and hysteretic dynamics in rapid fracture. Phys Rev Lett 94(22):224–301CrossRefGoogle Scholar
  27. Marder M (1991) New dynamical equation for cracks. Phys Rev Lett 66(19):2484CrossRefGoogle Scholar
  28. Marder M (1998) Adiabatic equation for cracks. Philos Mag B 78(2):203–214CrossRefGoogle Scholar
  29. Molinari JF, Gazonas G, Raghupathy R, Rusinek A, Zhou F (2007) The cohesive element approach to dynamic fragmentation: the question of energy convergence. Int J Numer Methods Eng 69(3):484–503CrossRefGoogle Scholar
  30. Murali P, Guo T, Zhang Y, Narasimhan R, Li Y, Gao H (2011) Atomic scale fluctuations govern brittle fracture and cavitation behavior in metallic glasses. Phys Rev Lett 107(21):215–501CrossRefGoogle Scholar
  31. Ortiz M, Pandolfi A (1999) Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis. Int J Numer Methods Eng 44:1267–1282CrossRefGoogle Scholar
  32. Palmer A, Rice J (1973) The growth of slip surfaces in the progressive failure of over-consolidated clay. Proc R Soc Lond A Math Phys Sci 332(1591):527–548CrossRefGoogle Scholar
  33. Ramulu M, Kobayashi A (1985) Mechanics of crack curving and branching—a dynamic fracture analysis. Int J Fract 27(3):187–201CrossRefGoogle Scholar
  34. Ravi-Chandar K (2004) Dynamic fracture. Elsevier, AmsterdamGoogle Scholar
  35. Ravi-Chandar K, Knauss W (1984) An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branching. Int J Fract 26(2):141–154CrossRefGoogle Scholar
  36. Ruiz G, Ortiz M, Pandolfi A (2000) Three-dimensional finite-element simulation of the dynamic Brazilian tests on concrete cylinders. Int J Numer Methods Eng 48(7):963–994CrossRefGoogle Scholar
  37. Sagy A, Cohen G, Reches Z, Fineberg J (2006) Dynamic fracture of granular material under quasi-static loading. J Geophys Res Solid Earth 111(B4):B04406Google Scholar
  38. Seelig T, Gross D (1999) On the interaction and branching of fast running cracks—a numerical investigation. J Mech Phys Solids 47(4):935–952CrossRefGoogle Scholar
  39. Sharon E, Fineberg J (1999) Confirming the continuum theory of dynamic brittle fracture for fast cracks. Nature 397(6717):333–335CrossRefGoogle Scholar
  40. Sharon E, Gross S, Fineberg J (1995) Local crack branching as a mechanism for instability in dynamic fracture. Phys Rev Lett 74(25):5096CrossRefGoogle Scholar
  41. Snozzi L, Caballero A, Molinari J (2011) Influence of the meso-structure in dynamic failure simulation of concrete under tensile loading. Cem Concr Res 41:1130–1142CrossRefGoogle Scholar
  42. Song JH, Wang H, Belytschko T (2008) A comparative study on finite element methods for dynamic fracture. Comput Mech 42(2):239–250CrossRefGoogle Scholar
  43. Wolff C, Richart N, Molinari JF (2015) A non-local continuum damage approach to model dynamic crack branching. Int J Numer Methods Eng 101(12):933–949CrossRefGoogle Scholar
  44. Xu XP, Needleman A (1994) Numerical simulations of fast crack growth in brittle solids. J Mech Phys Solids 42(9):1397–1434CrossRefGoogle Scholar
  45. Yoffe E (1951) The moving Griffith crack. Lond Edinb Dublin Philos Mag J Sci 42(330):739–750CrossRefGoogle Scholar
  46. Zhang Z, Wu F, Gao W, Tan J, Wang Z, Stoica M, Das J, Eckert J, Shen B, Inoue A (2006) Wavy cleavage fracture of bulk metallic glass. Appl Phys Lett 89(25):251917CrossRefGoogle Scholar
  47. Zhou F (1996) Study on the macroscopic behavior and the microscopic process of dynamic crack propagation. Ph.D. thesis, The University of Tokyo, TokyoGoogle Scholar
  48. Zhou F, Molinari JF, Shioya T (2005) A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials. Eng Fract Mech 72(9):1383–1410CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Okan Yılmaz
    • 1
  • Jérémy Bleyer
    • 2
  • Jean-François Molinari
    • 1
  1. 1.Civil Engineering Institute, Materials Science and Engineering InstituteEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Ecole des Ponts ParisTech, Laboratoire Navier UMR 8205 (ENPC-IFSTTAR-CNRS)Université Paris-EstChamps-sur-MarneFrance

Personalised recommendations