Skip to main content
Log in

Dark Matter in Galaxies: Evidences and Challenges

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The evidence of the phenomenon for which, in galaxies, the gravitating mass is distributed differently than the luminous mass, increases as new data become available. Furthermore, this discrepancy is well structured and it depends on the magnitude and the compactness of the galaxy and on the radius, in units of its luminous size \(R_{{ opt}}\), where the measure is performed. For the disk systems with \(-13\ge M_I\ge -24\) all this leads to an amazing scenario, revealed by the investigation of individual and coadded rotation curves, according to which, the circular velocity follows, from their centers out to their virial radii, an universal profile \(V_{{ URC}} (r/R_{{ opt}}, M_I)\) function only of the properties of the luminous mass component. Moreover, from the Universal Rotation Curve, so as from many individual high quality RCs, we discover that, in the innermost regions of galaxies, the DM halo density profiles are very shallow. Finally, the disk mass, the central halo density and its core radius, come out all related to each other and to two properties of the distribution of light in galaxies: the luminosity and the compactness. This phenomenology, being absent in the simplest \(\varLambda CDM\) Cosmology scenario, poses serious challenges to the latter or, alternatively, it requires a substantial and tuned involvement of baryons in the formation of the galactic halos. On the other side, the URC helps to explain the two-accelerations relationship found by McGaugh et al. (J Phys Rev Lett 117:201101, 2016), in terms of only well known astrophysical processes, acting in a standard DM halos + luminous disks scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Rubin, V.C., Ford, W.K., Thonnard, N.: Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605/R = 4kpc/to UGC 2885/R = 122 kpc. Astrophys. J. 238, 471 (1980)

    Article  ADS  Google Scholar 

  2. Bosma, A.: 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types. Astron. J. 86, 1825 (1981)

    Article  ADS  Google Scholar 

  3. Persic, M., Salucci, P.: Dark and visible matter in spiral galaxies. Mon. Not. R. Astron. Soc. 234, 131 (1988)

    Article  ADS  Google Scholar 

  4. Freeman, K.C.: On the disks of spiral and S0 galaxies. Astrophys. J. 160, 811 (1970)

    Article  ADS  Google Scholar 

  5. Tonini, C., Lapi, A., Shankar, F., Salucci, P.: Angular momentum transfer in dark matter halos: erasing the cusp. Astrophys. J. 638, 13 (2006)

    Article  ADS  Google Scholar 

  6. Yegorova, I.A., Salucci, P.: The radial Tully-Fisher relation for spiral galaxies—I. Mon. Not. R. Astron. Soc. 377, 507 (2007)

    Article  ADS  Google Scholar 

  7. Persic, M., Salucci, P., Stel, F.: The universal rotation curve of spiral galaxies—I. The dark matter connection. Mon. Not. R. Astron. Soc. 281, 27 (1996)

    Article  ADS  Google Scholar 

  8. Rubin, V.C., Ford Jr., W.K., Thonnard, N., Burstein, D.: Rotational properties of 23 SB galaxies. Astrophys. J. 261, 439 (1982)

    Article  ADS  Google Scholar 

  9. Persic, M., Salucci, P.: The universal galaxy rotation curve. Astrophys. J. 368, 60 (1991)

    Article  ADS  Google Scholar 

  10. Salucci, P., Lapi, A., Tonini, C., Gentile, G., et al.: The universal rotation curve of spiral galaxies—II. The dark matter distribution out to the virial radius. Mon. Not. R. Astron. Soc. 378, 41 (2007)

    Article  ADS  Google Scholar 

  11. Persic, M., Salucci, P.: Rotation curves of 967 spiral galaxies. Astrophys. J. Suppl. 99, 501 (1995)

    Article  ADS  Google Scholar 

  12. Salucci, P., Burkert, A.: Dark matter scaling relations. Astrophys. J. Lett. 537(1), L9 (2000)

    Article  ADS  Google Scholar 

  13. Kormendy, J., Freeman, K.: Scaling laws for dark matter halos in late-type and dwarf spheroidal galaxies. In: IAU Symposium Series, Sydney, Publications of the Astronomical Society of the Pacific, Vol. 220, p. 377 (2004)

    Article  ADS  Google Scholar 

  14. Donato, F., Gentile, G., Salucci, P.: Cores of dark matter haloes correlate with stellar scalelengths. Mon. Not. R. Astron. Soc. 353, L17 (2004)

    Article  ADS  Google Scholar 

  15. Spano, M., et al.: GHASP: an H kinematic survey of spiral and irregular galaxies—V. Dark matter distribution in 36 nearby spiral galaxies. Mon. Not. R. Astron. Soc. 383, 297 (2008)

    Article  ADS  Google Scholar 

  16. Donato, F., Gentile, G., Salucci, P., et al.: A constant dark matter halo surface density in galaxies. Mon. Not. R. Astron. Soc. 397, 1169 (2009)

    Article  ADS  Google Scholar 

  17. Shankar, F., et al.: New relationships between galaxy properties and host halo mass, and the role of feedbacks in galaxy formation. Astrophys. J. 643, 14 (2006)

    Article  ADS  Google Scholar 

  18. Evoli, C., Salucci, P., Lapi, A., Danese, L.: The HI content of local late-type galaxies. Astrophys. J. 743, 45 (2011)

    Article  ADS  Google Scholar 

  19. Navarro, J.F., Frenk, C.S., White, S.D.M.: The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996). (NFW)

    Article  ADS  Google Scholar 

  20. Klypin, A.A., et al.: 2011 dark matter halos in the standard cosmological model: results from the bolshoi simulation. Astrophys. J. 740, 102 (2010)

    Article  ADS  Google Scholar 

  21. Moore, B.: Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature 370, 629 (1994)

    Article  ADS  Google Scholar 

  22. Gentile, G., Salucci, P., Klein, U., et al.: The cored distribution of dark matter in spiral galaxies. Mon. Not. R. Astron. Soc. 351, 903 (2004)

    Article  ADS  Google Scholar 

  23. de Blok, W.J.G.: The core-cusp problem. Adv. Astron. 2010, 5D (2010)

    Google Scholar 

  24. Salucci, P., De Laurentis, M.: Dark matter in galaxies: leads to its nature. In: Proceedings of Science PoS(DSU 2012)012 (2013). arXiv:1302.2268

  25. Gentile, G., Burkert, A., Salucci, P., Klein, U., Walter, F.: The dwarf galaxy DDO 47 as a dark matter laboratory: testing cusps hiding in triaxial halos. Astrophys. J. 634, 145 (2005)

    Article  ADS  Google Scholar 

  26. Salucci, P.: The constant-density region of the dark haloes of spiral galaxies. Mon. Not. R. Astron. Soc. 320, 1 (2001)

    Article  ADS  Google Scholar 

  27. de Blok, W.J.G., Bosma, A.: High-resolution rotation curves of low surface brightness galaxies. Astron. Astrophys. 385, 816 (2002)

    Article  ADS  Google Scholar 

  28. Karukes, E.V., Salucci, P.: The universal rotation curve of dwarf disc galaxies. Mon. Not. R. Astron. Soc. 465, 4703 (2017)

    Article  ADS  Google Scholar 

  29. Oman, K.A., et al.: The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 452, 3650 (2015)

    Article  ADS  Google Scholar 

  30. Salucci, P., et al.: Dwarf spheroidal galaxy kinematics and spiral galaxy scaling laws. Mon. Not. R. Astron. Soc. 420, 2034 (2012)

    Article  ADS  Google Scholar 

  31. Burkert, A.: The structure and dark halo core properties of dwarf spheroidal galaxies. Astrophys. J. 808, 158 (2015)

    Article  ADS  Google Scholar 

  32. McGaugh, S., Lelli, F., Schombert, J.: Radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 117, 201101 (2016)

    Article  ADS  Google Scholar 

  33. Milgrom, M.: MOND impact on and of the recently updated mass-discrepancy-acceleration relation. arXiv:1609.06642

  34. Salucci, P.: Dark matter strikes back (2017). arXiv:1612.08857

  35. Ashman, K.M.: Dark matter in galaxies. Publ. Astron. Soc. Pac. 104, 1109 (1992)

    Article  ADS  Google Scholar 

  36. Somerville, R.S., Dave, R.: Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51 (2015)

    Article  ADS  Google Scholar 

  37. Weinberg, S.: Cosmology. OUP, Oxford (2008)

    MATH  Google Scholar 

  38. Dekel, A., Silk, J.: The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astropyhs. J. 303, 39 (1986)

    Article  ADS  Google Scholar 

  39. Ludlow, A.D., et al.: Mass-discrepancy acceleration relation: a natural outcome of galaxy formation in cold dark matter halos. Phys. Rev. Lett. 118, 161103 (2017)

    Article  ADS  Google Scholar 

  40. Dutton, A.A., et al.: IHAO IX: the role of gas inflows and outflows in driving the contraction and expansion of cold dark matter haloes. Mon. Not. R. Astron. Soc. 461, 2658 (2014)

    Article  ADS  Google Scholar 

  41. Keller, B.W., Wadsley, G.W.: CDM is consistent with SPARC radial acceleration relation. Astrophys. J. 835, 17 (2017)

    Article  ADS  Google Scholar 

  42. Navarro, J., et al.: The origin of the mass discrepancy-acceleration relation in CDM. arXiv:1612.06329

  43. Di Cintio, A., Brook, C.B., Macciò, A.V., et al.: The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415 (2014)

    Article  ADS  Google Scholar 

  44. Teyssier, R., Pontzen, A., Dubois, Y., Read, J.I.: Cusp-core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068 (2013)

    Article  ADS  Google Scholar 

  45. El-Badry, K., Wetzel, A., Geha, M., et al.: Breathing FIRE: how stellar feedback drives radial migration, rapid size fluctuations, and population gradients in low-mass galaxies. Astrophys. J. 820, 131 (2016)

    Article  ADS  Google Scholar 

  46. Fattahi, A., Navarro, J.F., Sawala, T., Frenk, et al.: The cold dark matter content of Galactic dwarf spheroidals: no cores, no failures, no problem (2016). arXiv:1607.06479

Download references

Acknowledgements

I would like to thank the Specola Vaticana and the Organizers of the Workshop “Black Holes, Gravitational Waves and Spacetime Singularities” where this paper has been conceived and Gabriele Gionti for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Salucci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salucci, P. Dark Matter in Galaxies: Evidences and Challenges. Found Phys 48, 1517–1537 (2018). https://doi.org/10.1007/s10701-018-0209-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0209-5

Keywords

Navigation