Skip to main content
Log in

On the Boltzmann–Grad Limit for Smooth Hard-Sphere Systems

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The problem is posed of the prescription of the so-called Boltzmann–Grad limit operator (\(\mathcal {L}_{BG}\)) for the N-body system of smooth hard-spheres which undergo unary, binary as well as multiple elastic instantaneous collisions. It is proved, that, despite the non-commutative property of the operator \(\mathcal {L}_{BG}\), the Boltzmann equation can nevertheless be uniquely determined. In particular, consistent with the claim of Uffink and Valente (Found Phys 45:404, 2015) that there is “no time-asymmetric ingredient” in its derivation, the Boltzmann equation is shown to be time-reversal symmetric. The proof is couched on the “ab initio” axiomatic approach to the classical statistical mechanics recently developed (Tessarotto et al. in Eur Phys J Plus 128:32, 2013). Implications relevant for the physical interpretation of the Boltzmann H-theorem and the phenomenon of decay to kinetic equilibrium are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. C. Cercignani private communication to M.T. (2002).

  2. Nevertheless, the crucial question concerning how the particle mass m should behave in the continuum limit (9) remains unanswered. In fact, both cases in which respectively \(m\rightarrow 0\) or is kept finite are manifestly unphysical. In fact in the first case no dynamics exists (Newton’s equations become invalid), while in the second a “gravitational catastrophe” occurs since the total mass Nm enclosed in the bounded domain \(\Omega \) necessarily becomes infinite.

References

  1. Boltzmann, L.: Weitere studien über das w ärmegleichgewicht unter gasmolekülen. Sitz. Akad. Wiss. 66, 275 (1872)

    MATH  Google Scholar 

  2. Grad, H.: Principles of the Kinetic theory of Gases. Handbook der Physik, vol. XII, p. 205. Springer, Berlin (1958)

    Google Scholar 

  3. Loschmidt, J.: Uber den Zustand des Warmegleichgewichtes eines Systems von Korpern mit Rucksicht auf die Schwerkraft. Akad. Wiss. Wien 73, 128 (1876)

    Google Scholar 

  4. Boltzmann, L.: Weitere Studien iiber das Warmegleichgewicht unter Gasmolekule. Wien. Ber.66, 275 (1877) (in Boltzmann: Uber die Beziehung zwischen dem zweiten Hauptsatz der mechanischen Warmetheorie und der Wahrscheinlichkeitsrechnung, vol. II, pp. 112–148 (1909))

  5. Ehrenfest, P., Ehrenfest-Afanassjewa, T.: The Conceptual Foundations of the Statistical Approach in Mechanics. Cornell University Press, New York (1912)

    MATH  Google Scholar 

  6. Cercignani, C.: H-Theorem and trend to equilibrium in the kinetic theory of gases. Arch. Mech. 34, 231 (1982)

    MathSciNet  MATH  Google Scholar 

  7. Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Phys. Today 46, 32 (1994)

    Article  Google Scholar 

  8. Drory, A.: Is there a reversibility paradox? Recentering the debate on the thermodynamic time arrow. Stud. Hist. Phil. Sci. Part B 39, 889–913 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Tessarotto, M., Cremaschini, C.: Axiomatic foundations of entropic theorems for hard-sphere systems. Eur. Phys. J. Plus 130, 91 (2015)

    Article  MATH  Google Scholar 

  10. Tessarotto, M., Cremaschini, C., Tessarotto, M.: On the conditions of validity of the Boltzmann equation and Boltzmann H-theorem. Eur. Phys. J. Plus 128, 32 (2013)

    Article  MATH  Google Scholar 

  11. Uffink, J., Valente, G.: Lanford’s theorem and the emergence of irreversibility. Found Phys. 45, 404 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Lanford, O.E.: Time Evolution of Large Classical Systems. Lecture Notes in Physics, vol. 38. Springer, Berlin (1975)

    MATH  Google Scholar 

  13. Lanford, O.E.: On the derivation of the Boltzmann equation. Soc. Math. France Asterisque 40, 117 (1976)

    MathSciNet  Google Scholar 

  14. Lanford, O.E.: Hard-sphere gas in the Boltzmann-Grad limit. Physica 106A, 70 (1981)

    Article  ADS  Google Scholar 

  15. Cercignani, C.: Theory and Applications of the Boltzmann Equation. Scottish Academic Press, Edinburgh (1975)

    MATH  Google Scholar 

  16. Tessarotto, M., Asci, C., Cremaschini, C., Soranzo, A., Tironi, G., Tessarotto, M.: The Lagrangian dynamics of thermal tracer particles in Navier-Stokes fluids. Eur. Phys. J. Plus 127, 36 (2012)

    Article  Google Scholar 

  17. Ardourel, V.: Irreversibility in the derivation of the Boltzmann equation. Found Phys. 47, 471 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Enskog, D.: Kinetiche Theorie dr Wärmeleiting, Reibung und Selbs-diffusion in gewissenverdichteten Gasen und Flü ssigkeiten. Svensk Vetenskps Akad. 63, 4 (1921) (English trans: Brush, S.G., Kinetic Theory, vol. 3, Pergamon, New York, 1972)

  19. Tessarotto, M., Cremaschini, C.: Theory of collisional invariants for the Master kinetic equation. Phys. Lett. A 378, 1760 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Tessarotto, M., Cremaschini, C.: The Master kinetic equation for the statistical treatment of the Boltzmann-Sinai classical dynamical system. Eur. Phys. J. Plus 129, 157 (2014)

    Article  Google Scholar 

  21. Boltzmann, L.: Vorlesungen über Gasstheorie, vol. 2. J.A. Barth, Leipzig (1896–1898) (English trans: Brush, H., Lectures on Gas Theory, vol. 1, Sect. 12; vol. 2, Sect. 22. University of California Press, California)

  22. Boltzmann, L.: Vorlesungen über Gasstheorie, vol. 2. J.A. Barth, Leipzig (1896–1898) (English trans: Brush, H., Lectures on Gas Theory, vol. 1, Sect. 8. University of California Press, California)

  23. Boltzmann, L.: Vorlesungen über Gasstheorie, vol. 2. J.A. Barth, Leipzig (1896–1898) (English trans: Brush, H., Lectures on Gas Theory, vol. 2, Sect. 38. University of California Press, California)

  24. Cercignani, C.: 134 years of Boltzmann equation. In: Gallavotti, G., Reiter, W., Yngvason, J. (eds.) Boltzmann’s Legacy. ESI Lecture in Mathematics and Physics. European Mathematical Society, Prague (2008)

    Google Scholar 

  25. Munster, A.: Statistical Thormodynamics. Springer, New York (1969)

    Google Scholar 

  26. Villani, C.: Entropy Production and Convergence to Equilibrium for the Boltzmann Equation. In: Zambrini, J.C. (ed.) 14th Int. Congress on Math. Physics, 28 July–2 August 2003, University of Lisbon, Portugal. World Scientific Publishing Co., Singapore (2006)

  27. Tessarotto, M., Cremaschini, C.: Modified BBGKY hierarchy for the hard-sphere system. Eur. Phys. J. Plus 129, 243 (2014)

    Article  MATH  Google Scholar 

  28. Tessarotto, M., Cremaschini, C.: Theory of collisional invariants for the Master kinetic equation. Phys. Lett. A 379, 1206 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Tessarotto, M., Asci, C., Cremaschini, C., Soranzo, A., Tironi, G.: Global validity of the Master kinetic equation for hard-sphere systems. Eur. Phys. J. Plus 130, 160 (2015)

    Article  Google Scholar 

  30. Tessarotto, M., Asci, C.: Asymptotic orderings and approximations of the Master kinetic equation for large hard spheres systems. Phys. Lett. A 381, 1484 (2017)

    Article  ADS  MATH  Google Scholar 

  31. Tessarotto, M., Mond, M., Asci, C.: Microscopic statistical description of incompressible Navier-Stokes granular fluids. Eur. Phys. J. Plus 132, 213 (2017)

    Article  Google Scholar 

  32. Cercignani, C.: Mathematical Methods in Kinetic Theory. Plenum Press, New York (1969)

    Book  MATH  Google Scholar 

  33. Asci, C.: Integration over an infinite-dimensional banach space and probabilistic applications. Int. J. Anal. (2014). https://doi.org/10.1155/2014/404186

  34. Asci, C.: Differentiation theory over infinite-dimensional banach spaces. J. Math. (2016). https://doi.org/10.1155/2016/2619087

Download references

Acknowledgements

The authors are grateful to the International Center for Theoretical Physics (Miramare, Trieste, Italy) for the hospitality during the preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Tessarotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessarotto, M., Cremaschini, C., Mond, M. et al. On the Boltzmann–Grad Limit for Smooth Hard-Sphere Systems. Found Phys 48, 271–294 (2018). https://doi.org/10.1007/s10701-018-0144-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-018-0144-5

Keywords

Navigation