Skip to main content
Log in

Proof of the Spin Statistics Connection 2: Relativistic Theory

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The traditional standard theory of quantum mechanics is unable to solve the spin–statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858–873, 2015) we presented a proof of the spin–statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics”. In the present paper, by the same theory the proof of the spin–statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin–statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858–873, 2015). The present proof of the spin–statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858–873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In some axiomatic approaches to the structure of spacetime, the so-called “Weyl tensor” \(W^i_{jkl}\) is used in place of the curvature tensor \(R^i_{jkl}\). The Weyl tensor is obtained from the full curvature tensor by subtracting out various traces and describes the tidal part of the gravitational forces. The Weyl tensor is unrelated to the scalar curvature \(R_W\) in Eq. (3), because all contractions of \(W^i_{jkl}\) are zero.

  2. However the positive measure \(d\mu =\rho \sqrt{g}d^nq=|{\varPsi }|^2\sqrt{g}d^nq\) is finite over any compact region of \(V^N\) and, in particular, over the region where the Weyl invariant complete figure introduced in Sect. 2.1 can be defined.

  3. The boost \(B({\tilde{y}})\) considered here differs from the boost commonly used in the relativistic mechanics because \(B({\tilde{y}})\) contains a space rotation too. An alternative form of left translation rule is \(R_2(\gamma ')=B^{-1}({\tilde{y}}'){\bar{{\varLambda }}} B({\tilde{y}})\), which represents “Wigner’s rotation” in the present case.

  4. In the case \(s=0\) we have \(D^{(0,0)}=1\) and the SST reduces to the symmetry condition (19).

References

  1. Bacry, H.: Answer to question 7 [The spin statistics theorem, Dwight E. Neuenschwander, Am. J. Phys. 62 (11), 972 (1994)]. Am. J. Phys. 63(4), 297–298 (1995). doi:10.1119/1.17952

    Article  ADS  Google Scholar 

  2. Ballentine, L.E.: The statistical interpretation of quantum mechanics. Rev. Mod. Phys. 42, 358–381 (1970)

    Article  ADS  MATH  Google Scholar 

  3. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85(2), 166–179 (1952). doi:10.1103/PhysRev.85.166

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85(2), 180–193 (1952). doi:10.1103/PhysRev.85.180

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Bohm, D., Hiley, B.J.: The Undivided Universe: An Ontological Interpretation of Quantum Theory, reprint edn. Routledge, London (1995)

    MATH  Google Scholar 

  6. Broyles, A.A.: Spin and statistics. Am. J. Phys. 44(4), 340–343 (1976). doi:10.1119/1.10191

    Article  ADS  MathSciNet  Google Scholar 

  7. Cheng, H.: Possible existence of Weyl’s vector meson. Phys. Rev. Lett. 61(19), 2182 (1988)

    Article  ADS  Google Scholar 

  8. De Martini, F., Santamato, E.: Derivation of Dirac’s equation from conformal differential geometry. In: D’Ariano, M., Fei, S.-M., Haven, E., Hiesmayr, B., Jaeger, G., Khrennikov, A., Larsson, J.-A., Melville (eds.) Foundations of Probability and Physics 6, AIP Conference Proceedings, vol. 4, pp. 45–54. (2012). doi:10.1063/1.3688951

  9. De Martini, F., Santamato, E.: Unveiling the “mystery” of quantum nonlocality by conformal geometrodynamics. In: Khrennikov, A., Atmanspacher, H., Migdall, A., Polyakov, S., Melville (eds.) Quantum Theory: Reconsideration of Foundations 6, AIP Conference Proceedings, vol. 1508, pp. 162–171 (2012). doi:10.1063/1.4773128

  10. De Martini, F., Santamato, E.: A conformal geometric approach to quantum entanglement for spin-1/2 particles. EPJ Web Conf. 58, 01,012 (2013). doi:10.1051/epjconf/20135801012

    Article  Google Scholar 

  11. De Martini, F., Santamato, E.: Interpretation of quantum nonlocality by conformal quantum geometrodynamics. Int. J. Theor. Phys. 53(10), 3308–3322 (2014). doi:10.1007/s10773-013-1651-y

    Article  MathSciNet  MATH  Google Scholar 

  12. De Martini, F., Santamato, E.: The intrinsic helicity of elementary particles and the spin–statistic connection. Int. J. Quantum Inf. 12(07n08), 1560,004 (2014). doi:10.1142/S0219749915600047

    Article  MathSciNet  MATH  Google Scholar 

  13. De Martini, F., Santamato, E.: Nonlocality, no-signalling, and Bells theorem investigated by Weyl conformal differential geometry. Phys. Scr. T163, 014015 (2014). doi:10.1088/0031-8949/2014/T163/014015

    Article  ADS  Google Scholar 

  14. De Martini, F., Santamato, E.: Violation of the Bell inequalities by Weyl conformal quantum geometrodynamics a re-interpretation of quantum nonlocality. J. Adv. Phys. 4(3), 272–279 (2015). doi:10.1166/jap.2015.1195

    Article  Google Scholar 

  15. Dirac, P.A.M.: Long range forces and broken symmetries. Proc. R. Soc. Lond. Ser. A 333, 403–418 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  16. Duck, I., Sudarshan, E.C.G.: Pauli and the Spin–Statistics Theorem. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  17. Duck, I., Sudarshan, E.C.G.: Toward an understanding of the spin–statistics theorem. Am. J. Phys. 66(4), 284–303 (1998). doi:10.1119/1.18860

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Duck, I., Sudarshan, E.C.G., Wightman, A.S.: Pauli and the spin–statistics theorem. Am. J. Phys. 67(8), 742–746 (1999). doi:10.1119/1.19365

    Article  ADS  Google Scholar 

  19. Ehlers, J., Pirani, F.A., Schild, A.: General Relativity (Papers in honour of J. L. Synge), In: O’Raifeartaigh, L. (ed.) The Geometry of Free Fall and Light, p. 63. Clarendon Press, Oxford (1972)

    Google Scholar 

  20. Einstein, A.: Sitzung. d. Preuss. Akad. d. Wiss K1, 478 (1918). Including Weyl’s reply

  21. Faraoni, V., Capozziello, S.: Beyond Einstein Gravity. Springer, Dordrecht (2011)

    Book  MATH  Google Scholar 

  22. Fatibene, L., Garruto, S., Polistina, M.: Breaking the conformal gauge by fixing time protocols. Int. J. Geom. Meth. Mod. Phys. 12(04), 1550,044 (2015). doi:10.1142/s0219887815500449

    Article  MathSciNet  MATH  Google Scholar 

  23. Feynman, R., Leighton, R.: Feynman Lectures on Physics, vol. I. Basic Books, New York (2011). Revised 50th anniversary edn

    Google Scholar 

  24. Fierz, M.: Ueber die relativistische Theorie krftefreier Teilchen mit beliebigem Spin. Helv. Phys. Acta 12, 3–37 (1939)

    Article  MATH  Google Scholar 

  25. Guido, D., Longo, R.: An algebraic spin and statistics theorem. Commun. Math. Phys. 172(3), 517–533 (1995). doi:10.1007/BF02101806

    Article  ADS  MATH  Google Scholar 

  26. Hayashi, K., Kasuya, M., Shirafuji, T.: Elementary particles and Weyl’s gauge field. Prog. Theor. Phys. 57(2), 431–440 (1977)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Hochberg, D., Plunien, G.: Theory of matter in Weyl spacetime. Phys. Rev. D 43(10), 3358–3367 (1991). doi:10.1103/PhysRevD.43.3358

    Article  ADS  Google Scholar 

  28. Jabs, A.: Connecting spin and statistics in quantum mechanics. Found. Phys. 40(7), 776–792 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. 2, 2nd edn. Wiley, New York (1996)

    MATH  Google Scholar 

  30. Leinaas, J.M., Myrheim, J.: On the theory of identical particles. Nuovo Cimento B Series 11 37(1), 1–23 (1977). doi:10.1007/BF02727953

    Article  Google Scholar 

  31. Pauli, W.: The connection between spin and statistics. Phys. Rev. 58(8), 716–722 (1940). doi:10.1103/PhysRev.58.716

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Romer, R.H.: The spin–statistics theorem. Am. J. Phys. 70(8), 791 (2002). doi:10.1119/1.1482064

    Article  ADS  Google Scholar 

  33. Rund, H.: The Hamilton–Jacobi Theory in the Calculus of Variations Its Role in Mathematics Theory and Application. Krieger Pub Co., Huntington (1973)

    MATH  Google Scholar 

  34. Salam, A., Strathdee, J.: On Kaluza–Klein theory. Ann. Phys. 141(2), 316–352 (1982). doi:10.1016/0003-4916(82)90291-3

    Article  ADS  MathSciNet  Google Scholar 

  35. Santamato, E.: Geometric derivation of the Schrödinger equation from classical mechanics in curved Weyl spaces. Phys. Rev. D 29(2), 216–222 (1984). doi:10.1103/PhysRevD.29.216

    Article  ADS  MathSciNet  Google Scholar 

  36. Santamato, E.: Statistical interpretation of the Klein–Gordon equation in terms of the space-time Weyl curvature. J. Math. Phys. 25(8), 2477–2480 (1984). doi:10.1063/1.526467

    Article  ADS  MathSciNet  Google Scholar 

  37. Santamato, E.: Gauge-invariant statistical mechanics and average action principle for the Klein–Gordon particle in geometric quantum mechanics. Phys. Rev. D 32(10), 2615–2621 (1985). doi:10.1103/PhysRevD.32.2615

    Article  ADS  MathSciNet  Google Scholar 

  38. Santamato, E.: Heisenberg uncertainty relations and average space curvature in geometric quantum mechanics. Phys. Lett. A 130(45), 199–202 (1988). doi:10.1016/0375-9601(88)90593-2

    Article  ADS  MathSciNet  Google Scholar 

  39. Santamato, E.: The role of Dirac equations in the classical mechanics of the relativistic top. arXiv:0808.3237 [quant-ph] (2008)

  40. Santamato, E., De Martini, F.: Solving the nonlocality riddle by conformal quantum geometrodynamics. Int. J. Quantum Inf. (2012). doi:10.1142/S0219749912410134

  41. Santamato, E., De Martini, F.: Derivation of the Dirac equation by conformal differential geometry. Found. Phys. 43, 631–641 (2013). doi:10.1007/s10701-013-9703-y

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Santamato, E., De Martini, F.: Solving the nonlocality riddle by conformal quantum geometrodynamics. J. Phys. Conf. Ser. 442(1), 012,059 (2013). doi:10.1088/1742-6596/442/1/012059

    Article  MATH  Google Scholar 

  43. Santamato, E., De Martini, F.D.: Proof of the spin–statistics theorem. Found. Phys. 45(7), 858–873 (2015). doi:10.1007/s10701-015-9912-7

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Schwinger, J.: Spin, statistics, and the TCP theorem. Proc. Natl. Acad. Sci. USA 44(2), 223–228 (1958). doi:10.1073/pnas.44.2.223.MEDLINE:16590172

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Streater, R.F., Wightman, A.S.: PCT, Spin and Statistics, and All That. Princeton University Press, Princeton (2000)

    MATH  Google Scholar 

  46. Trautman, A.: Editorial note to: J. Ehlers, F.A.E. Piranifrancesco de martini and A. Schild, the geometry of free fall and light propagation. Gen. Relativ. Gravit. 44(6), 1581–1586 (2012)

    Article  ADS  MATH  Google Scholar 

  47. Utiyama, R.: On Weyl’s gauge field. Prog. Theor. Phys. 50(6), 2080–2090 (1973)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Utiyama, R.: On Weyl’s gauge field. II. Prog. Theor. Phys. 53(2), 565–574 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Weyl, H.: Gravitation und Elektrizität. Sitz. Berichte d. Preuss. Akad. d. Wiss. Berlin K1, 465–480 (1918). Reprinted in: The Principles of Relativity (Dover, New York, 1923)

  50. Weyl, H.: Space, Time, Matter, 4th edn. Dover Publications Inc., New York (1952)

    Google Scholar 

  51. Wheeler, J.T.: Quantum measurement and geometry. Phys. Rev. D 41(2), 431 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  52. Wheeler, J.T.: New conformal gauging and the electromagnetic theory of Weyl. J. Math. Phys. 39(1), 299–328 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  53. Wightman, A.S.: Quantum field theory in terms of vacuum expectation values. Phys. Rev. 101(2), 860–866 (1956). doi:10.1103/physrev.101.860

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Santamato.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santamato, E., De Martini, F. Proof of the Spin Statistics Connection 2: Relativistic Theory. Found Phys 47, 1609–1625 (2017). https://doi.org/10.1007/s10701-017-0114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-017-0114-3

Keywords

Navigation