Foundations of Physics

, Volume 47, Issue 4, pp 471–489 | Cite as

Irreversibility in the Derivation of the Boltzmann Equation

  • Vincent Ardourel


Uffink and Valente (Found Phys 45:404–438, 2015) claim that there is no time-asymmetric ingredient that, added to the Hamiltonian equations of motion, allows to obtain the Boltzmann equation within the Lanford’s derivation. This paper is a discussion and a reply to that analysis. More specifically, I focus on two mathematical tools used in this derivation, viz. the Boltzmann–Grad (B–G) limit and the incoming configurations. Although none of them are time-asymmetric ingredients, by themselves, I claim that the use of incoming configurations, as taken within the B–G limit, is such a time-asymmetric ingredient. Accordingly, this leads to reconsider a kind of Stoßzahlansatz within Lanford’s derivation.


Boltzmann equation Lanford’s theorem Boltzmann–Grad limit Irreversibility Time-reversal invariance Stoßzahlansatz 



Earlier versions of this article were presented at the 25th biennial meeting of the Philosophy of Science Association, the 18th UK and European Conference on Foundations of Physics, and the British Society for the Philosophy of Science 2016 annual conference. I wish to thank the participants for their helpful comments. I am also grateful to Anouk Barberousse for her insightful comments and the organization of workshops at Sciences, Normes, Decision (FRE 3593, CNRS & Université Paris-Sorbonne) that allow me to discuss this work. Thank you in particular to Sorin Bangu, Nicolas Fillion, Cyrille Imbert, Johannes Lenhard, Robert Moir, and Jos Uffink for comments and discussions. I am also most grateful to Giovanni Valente and Laure Saint-Raymond for their comments on previous drafts of this paper and their contribution to enhancing the quality of the article. This work was supported by “MOVE-IN Louvain” Incoming Post-doctoral Fellowship, co-funded by the Marie Curie Actions of the European Commission.


  1. 1.
    Brown, H., Myrvold, W., Uffink, J.: Boltzmann’s H theorem, its discontents, and the birth of statistical mechanics. Stud. Hist. Philos. Modern Phys. 40, 174–191 (2009)MathSciNetCrossRefMATHADSGoogle Scholar
  2. 2.
    Cercignani, C., Illner, R., Pulvirenti, M.: The Mathematical Theory of Diluted Gases. Springer, New York (1994)CrossRefMATHGoogle Scholar
  3. 3.
    Gallagher, I., Saint-Raymond, L., Texier, B.: From Newton to Boltzmann : hard spheres and short-range potentials. In: Zurich Lectures in Advanced Mathematics, EMS Publications (2014). arXiv:1208.5753
  4. 4.
    Golse, F.: The Mean-Field Limit for the Dynamics of Large Particle Systems . “Journées Equations aux Derivées Partielles”, Exp. No. IX, 47 pp., Univ. Nantes, Nantes (2003).
  5. 5.
    Golse, F.: Boltzmann–Grad limit. Scholarpedia 8(10), 9141 (2013).
  6. 6.
    Golse, F.: De Newton à Boltzmann et Einstein: validation des modèles cinétiques et de diffusion. Séminaire BOURBAKI, 66, 2013–2014, 1083 (2014).
  7. 7.
    Grad, H.: On the kinetic theory of rarefied gases. Commun. Pure Appl. Math. 2, 331–407 (1949)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jones, N. J.: Ineliminable idealizations, phase transitions, and irreversibility. PhD thesis, The Ohio State University (2006).!etd.send_file?accession=osu1163026373&disposition=inline
  9. 9.
    King, F.: BBGKY hierarchy for positive potentials. Ph.D. Dissertation, Dept. Mathematics, Univ. California, Berkeley (1975)Google Scholar
  10. 10.
    Lanford, O.E.: Time evolution of large classical systems. In: Moser, J. (ed.) Dynamical Systems, Theory and Applications. Lecture Notes in Theoretical Physics, vol. 38, pp. 1–111. Springer, Berlin (1975)CrossRefGoogle Scholar
  11. 11.
    Lanford, O.E.: On the derivation of the Boltzmann equation. Asterisque 40, 117–137 (1976)MathSciNetGoogle Scholar
  12. 12.
    Lanford, O.E.: The hard sphere gas in the Boltzmann–Grad limit. Physica 106A, 70–76 (1981)CrossRefADSGoogle Scholar
  13. 13.
    Lebowitz, J.L.: Microscopic dynamics and macroscopic laws. In: Horton, C.W. Jr., Reichl, L.E., Szebehely, V.G. (eds.) Long-Time Prediction in Dynamics, presentations from the workshop held in March 1981 in Lakeway, TX, pp. 220–233. Wiley, New YorkGoogle Scholar
  14. 14.
    Norton, J.: Approximation and idealization: why the difference matters. Philos. Sci. 79(2), 207–232 (2012)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Saint-Raymond, L.: L’irréversibilité, une histoire de probabilités. In: Conference UPMC February 21 (2013).
  16. 16.
    Saint-Raymond, L.: Mini course—from particle systems to collisional kinetic equations—Class 2 (2015).
  17. 17.
    Sklar, L.: Physics and Chance: Philosophical Issues in the Foundations of Statistical Mechanics. Cambridge University Press, Cambridge (1993)CrossRefGoogle Scholar
  18. 18.
    Spohn, H.: On the integrated form of the BBGKY hierarchy for hard spheres (2006).
  19. 19.
    Uffink, J.: Compendium of the foundations of classical statistical physics. In: Butterfield, J., Earman, J. (eds.) Handbook for the Philosophy of Physics. Elsevier, Amsterdam (2007)Google Scholar
  20. 20.
    Uffink, J., Valente, G.: Lanford’s theorem and the emergence of irreversibility. Found. Phys. 45, 404–438 (2015)MathSciNetCrossRefMATHADSGoogle Scholar
  21. 21.
    Valente, G.: The approach towards equilibrium in Lanford’s theorem. Eur. J. Philos. Sci. 4(3), 309–335 (2014)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Villani, C.: (Ir)reversibilité et entropie. Séminaire Poincaré XV, Le Temps, Institut Henri Poincaré, Paris, pp. 17–75 (2010).

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Institut Supérieur de Philosophie, Université catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations