Skip to main content
Log in

De Sitter Space Without Dynamical Quantum Fluctuations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We argue that, under certain plausible assumptions, de Sitter space settles into a quiescent vacuum in which there are no dynamical quantum fluctuations. Such fluctuations require either an evolving microstate, or time-dependent histories of out-of-equilibrium recording devices, which we argue are absent in stationary states. For a massive scalar field in a fixed de Sitter background, the cosmic no-hair theorem implies that the state of the patch approaches the vacuum, where there are no fluctuations. We argue that an analogous conclusion holds whenever a patch of de Sitter is embedded in a larger theory with an infinite-dimensional Hilbert space, including semiclassical quantum gravity with false vacua or complementarity in theories with at least one Minkowski vacuum. This reasoning provides an escape from the Boltzmann brain problem in such theories. It also implies that vacuum states do not uptunnel to higher-energy vacua and that perturbations do not decohere while slow-roll inflation occurs, suggesting that eternal inflation is much less common than often supposed. On the other hand, if a de Sitter patch is a closed system with a finite-dimensional Hilbert space, there will be Poincaré recurrences and dynamical Boltzmann fluctuations into lower-entropy states. Our analysis does not alter the conventional understanding of the origin of density fluctuations from primordial inflation, since reheating naturally generates a high-entropy environment and leads to decoherence, nor does it affect the existence of non-dynamical vacuum fluctuations such as those that give rise to the Casimir effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. See [23] for a discussion on the difficulties of measurements in a finite-dimensional asymptotic de Sitter space if a measuring device were indeed present.

  2. For the purposes of this paper, we are concerned with only the von Neumann entropy from entanglements. There is also the thermodynamic entropy associated with a mixed thermal density matrix, which sets an upper bound on the von Neumann entropy. As the quantum system thermalizes, the von Neumann entropy approaches the thermodynamic entropy [39].

  3. Even in stationary states, one can define an effective evolution with respect to correlations with a clock subsystem [40]. The effective time parameter \(\tau \) has nothing to do with the ordinary coordinate time t; all such time evolutions are present at every moment of (ordinary) time. From this perspective, a large number of Boltzmann brains and similar fluctuations actually exist at every moment in an apparently stationary spacetime. Such a conclusion would apply to Minkowski spacetime as well as to de Sitter, in conflict with the conventional understanding that dynamical fluctuations in de Sitter depend on the Gibbons–Hawking temperature (but see [41, 42]). This kind of effective evolution is fundamentally different from the ordinary evolution studied in this paper.

  4. We thank Alan Guth, Charles Bennett, and Jess Riedel for discussions on this point.

  5. We do not consider the massless case, since there is no (vacuum) state that is invariant under the full de Sitter group [47], which is problematic for the cosmic no-hair theorem in Sect. 3.2. However, if one assumes the shift invariance of the massless scalar field is just a global gauge transformation, then a fully de Sitter invariant vacuum can in fact be defined [48].

  6. Without the Hadamard condition [49], there are a continuum of de Sitter-invariant states, known as the \(\alpha \) vacua, which are related to one another via Bogoliubov transformations [47].

  7. As previously mentioned, the massless case is problematic, since there is no de Sitter-invariant vacuum in the noninteracting limit [47]. With nonvanishing interactions, correlation functions of the field at large timelike separations grow no faster than a polynomial function of \(H\tau \) at the perturbative level [57]. There is, however, evidence at one and two loops that the 2-point correlation function decays as a polynomial of H [5759].

  8. For subtleties involving the use of the static Hamiltonian in quantum gravity, see [66].

  9. We thank Stefan Leichenauer and Paul Steinhardt for discussions of these issues.

  10. For related work that questions the validity of Boltzmann brains for decoherence-based reasons, see [42, 77, 78]. For the need for Hilbert space to be infinite-dimensional, see [79].

  11. One might imagine that decoherence occurs because modes become super-Hubble-sized, and we should trace over degrees of freedom outside the horizon. This reasoning is not quite right, as such modes could (and often do) later re-enter the observable universe; they become larger than the Hubble radius during inflation but never leave the true horizon.

References

  1. Bunch, T., Davies, P.: Quantum Field Theory in de Sitter Space: Renormalization by Point Splitting. Proc. Roy. Soc. Lond. A360, 117 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bunch, T., Davies, P.: Nonconformal renormalized stress tensors in robertson-walker space-times. J. Phys. A 11, 1315 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  3. Hartle, J., Hawking, S.: Path integral derivation of black hole radiance. Phys. Rev. D 13, 2188 (1976)

    Article  ADS  Google Scholar 

  4. Gibbons, G., Hawking, S.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  5. Banks, T.: Cosmological breaking of supersymmetry? or Little lambda goes back to the future 2. Int. J. Mod. Phys. A 16, 910 (2001). arXiv:hep-th/0007146

  6. Banks, T., Fischler, W.: M theory observables for cosmological space-times. arXiv:hep-th/0102077

  7. Lyth, D.H., Liddle, A.R.: The Primordial Density Perturbation: Cosmology, Inflation and the Origin of Structure. Cambridge University Press, Revised edition (2009)

  8. Dodelson, S.: Modern Cosmology. Academic Press, San Diego, CA (2003)

    Google Scholar 

  9. Baumann, D.: TASI lectures on inflation. arXiv:0907.5424

  10. Vilenkin, A.: The birth of inflationary universes. Phys. Rev. D 27, 2848 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  11. Goncharov, A.S., Linde, A.D.: Global structure of the inflationary universe. Zh. Eksp. Teor. Fiz. 92, 1137 (1987)

    ADS  MathSciNet  MATH  Google Scholar 

  12. Goncharov, A., Linde, A.D., Mukhanov, V.F.: The global structure of the inflationary universe. Int. J. Mod. Phys. A 2, 561 (1987)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Weinberg, S.: Anthropic bound on the cosmological constant. Phys. Rev. Lett. 59, 2607 (1987)

    Article  ADS  Google Scholar 

  14. Bousso, R., Polchinski, J.: Quantization of four form fluxes and dynamical neutralization of the cosmological constant. JHEP 06, 006 (2000). arXiv:hep-th/0004134

  15. Kachru, S., Kallosh, R., Linde, A.D., Trivedi, S.P.: De Sitter vacua in string theory. Phys. Rev. D 68, 046005 (2003). arXiv:hep-th/0301240

  16. Susskind, L.: The anthropic landscape of string theory. In: The Davis Meeting on Cosmic Inflation (2003). arXiv:hep-th/0302219

  17. Denef, F., Douglas, M.R.: Distributions of flux vacua. JHEP 05, 072 (2004). arXiv:hep-th/0404116

  18. Lee, K.-M., Weinberg, E.J.: Decay of the true vacuum in curved space-time. Phys. Rev. D 36, 1088 (1987)

    Article  ADS  Google Scholar 

  19. Aguirre, A., Carroll, S.M., Johnson, M.C.: Out of equilibrium: understanding cosmological evolution to lower-entropy states. JCAP 02, 024 (2012). arXiv:1108.0417

  20. Dyson, L., Kleban, M., Susskind, L.: Disturbing implications of a cosmological constant. JHEP 10, 011 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  21. Albrecht, A., Sorbo, L.: Can the universe afford inflation? Phys. Rev. D 70, 063528 (2004). arXiv:hep-th/0405270

  22. Bousso, R., Freivogel, B.: A Paradox in the global description of the multiverse. JHEP 06, 018 (2007). arXiv:hep-th/0610132

  23. Banks, T., Fischler, W., Paban, S.: Recurrent nightmares? Measurement theory in de Sitter space. JHEP 12, 062 (2002). arXiv:hep-th/0210160

  24. Spradlin, M., Strominger, A., Volovich, A.: Les Houches lectures on de Sitter space. arXiv:hep-th/0110007

  25. Wald, R.M.: Asymptotic behavior of homogeneous cosmological models in the presence of a positive cosmological constant. Phys. Rev. D 28, 2118 (1983)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Hollands, S.: Correlators, Feynman diagrams, and quantum no-hair in deSitter spacetime. Commun. Math. Phys. 319, 1 (2013). arXiv:1010.5367

  27. Marolf, D., Morrison, I.A.: The IR stability of de Sitter QFT: results at all orders. Phys. Rev. D 84, 044040 (2011). arXiv:1010.5327

  28. Stephens, C.R., ’t Hooft, G., Whiting, B.F.: Black hole evaporation without information loss. Class. Quant. Grav. 11, 621 (1994). arXiv:gr-qc/9310006

  29. Susskind, L., Thorlacius, L., Uglum, J.: The Stretched horizon and black hole complementarity. Phys. Rev. D 48, 3743 (1993). arXiv:hep-th/9306069

  30. Parikh, M.K., Savonije, I., Verlinde, E.P.: Elliptic de Sitter space: dS/Z(2). Phys. Rev. D 67, 064005 (2003). arXiv:hep-th/0209120

  31. Everett, H.: Relative state formulation of quantum mechanics. Rev. Mod. Phys. 29, 454 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  32. Schlosshauer, M.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267 (2004). arXiv:quant-ph/0312059

  33. Wallace, D.: The Emergent Multiverse. Oxford University Press, Oxford (2012)

    Book  MATH  Google Scholar 

  34. Elby, A., Bub, J.: Triorthogonal uniqueness theorem and its relevance to the interpretation of quantum mechanics. Phys. Rev. A 49, 4213 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  35. Zurek, W.: Pointer basis of quantum apparatus: into what mixture does the wave packet collapse? Phys. Rev. D 24, 1516 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  36. Zurek, W.H.: Preferred states, predictability, classicality and the environment-induced decoherence. Prog. Theor. Phys. 89, 281 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  37. Zurek, W.H.: Decoherence, Einselection, and the existential interpretation: The Rough guide. Phil. Trans. R. Soc. Lond. A356, 1793 (1998). arXiv:quant-ph/9805065

  38. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003). arXiv:quant-ph/0105127

  39. Khlebnikov, S., Kruczenski, M.: Thermalization of isolated quantum systems. arXiv:1312.4612

  40. Page, D.N., Wootters, W.K.: Evolution without evolution: dynamics described by stationary observables. Phys. Rev. D 27, 2885 (1983)

    Article  ADS  Google Scholar 

  41. Page, D.N.: The Lifetime of the universe. J. Korean Phys. Soc. 49, 711 (2006). arXiv:hep-th/0510003 [hep-th]

  42. Davenport, M., Olum, K.D.: Are there Boltzmann brains in the vacuum? arXiv:1008.0808 [hep-th]

  43. Lindblad, G.: On the generators of quantum dynamical semigroups. Commun. Math. Phys. 48, 119 (1976)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Marquardt, F., Püttmann, A.: Introduction to dissipation and decoherence in quantum systems. arXiv:0809.4403

  45. Zurek, W.: Environment induced superselection rules. Phys. Rev. D 26, 1862 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  46. Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (1984)

  47. Allen, B.: Vacuum states in de sitter space. Phys. Rev. D 32, 3136 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  48. Page, D.N., Wu, X.: Massless scalar field vacuum in de sitter spacetime. JCAP 11, 51 (2012). arXiv:1204.4462

  49. Candelas, P., Raine, D.: General relativistic quantum field theory-an exactly soluble model. Phys. Rev. D 12, 965 (1975)

    Article  ADS  Google Scholar 

  50. Géhéniau, J., Schomblond, C.: Fonctions de green dans l’univers de de sitter. Acad. R. Belg. Bull. Cl. Sci. 54, 1147 (1968)

    MathSciNet  Google Scholar 

  51. Schomblond, C., Spindel, P.: Unicity conditions of the scalar field propagator delta(1) (x, y) in de Sitter Universe. Ann. Poincare Phys. Theor. 25, 67 (1976)

    ADS  MathSciNet  MATH  Google Scholar 

  52. Chernikov, N., Tagirov, E.: Quantum theory of scalar fields in de Sitter space-time. Annales Poincare Phys. Theor. A9, 109 (1968)

    ADS  MathSciNet  MATH  Google Scholar 

  53. Tagirov, E.: Consequences of field quantization in de Sitter type cosmological models. Ann. Phys. 76, 561 (1973)

    Article  ADS  Google Scholar 

  54. Mottola, E.: Particle creation in de Sitter space. Phys. Rev. D 31, 754 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  55. Bousso, R., Maloney, A., Strominger, A.: Conformal vacua and entropy in de sitter space. Phys. Rev. D 65, 104039 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  56. Anderson, P.R., Eaker, W., Habib, S., Molina-Paris, C., Mottola, E.: Attractor states and infrared scaling in de Sitter space. Phys. Rev. D 62, 124019 (2000). arXiv:gr-qc/0005102

  57. Hollands, S.: Massless interacting quantum fields in de Sitter spacetime. Ann Henri Poincare 13, 1039 (2012). arXiv:1105.1996 [gr-qc]

  58. Garbrecht, B., Rigopoulos, G.: Self regulation of infrared correlations for massless scalar fields during inflation. Phys. Rev. D 84, 063516 (2011). arXiv:1105.0418

  59. Garbrecht, B., Rigopoulos, G., Zhu, Y.: Infrared correlations in de sitter space: field theoretic vs. stochastic approach. Phys. Rev. D 89, 063506 (2014). arXiv:1310.0367

  60. Nomura, Y.: Physical theories, eternal inflation, and quantum universe. JHEP 11, 063 (2011). arXiv:1104.2324 [hep-th]

  61. Nomura, Y.: Quantum mechanics, spacetime locality, and gravity. Found. Phys. 43, 978 (2013). arXiv:1110.4630 [hep-th]

  62. Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  63. Hawking, S.: Gravitational radiation from colliding black holes. Phys. Rev. Lett. 26, 1344 (1971)

    Article  ADS  Google Scholar 

  64. Goheer, N., Kleban, M., Susskind, L.: The Trouble with de Sitter space. JHEP 07, 056 (2003). arXiv:hep-th/0212209 [hep-th]

  65. Banks, T.: Some thoughts on the quantum theory of stable de Sitter space. arXiv:hep-th/0503066

  66. Giddings, S.B., Marolf, D.: A global picture of quantum de Sitter space. Phys. Rev. D 76, 064023 (2007). arXiv:0705.1178

  67. Coleman, S.R.: The fate of the false vacuum. 1. Semiclassical theory. Phys. Rev. D 15, 2929 (1977)

    Article  ADS  Google Scholar 

  68. Coleman, S.R., De Luccia, F.: Gravitational effects on and of vacuum decay. Phys. Rev. D 21, 3305 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  69. Susskind, L.: The census taker’s hat. arXiv:0710.1129

  70. Sekino, Y., Susskind, L.: Census taking in the hat: FRW/CFT duality. Phys. Rev. D 80, 083531 (2009). arXiv:0908.3844

  71. Bousso, R., Susskind, L.: The Multiverse Interpretation of Quantum Mechanics. Phys. Rev. D 85, 045007 (2012). arXiv:1105.3796

  72. Page, D.N.: Is our universe likely to decay within 20 billion years? Phys. Rev. D 78, 063535 (2008). arXiv:hep-th/0610079

  73. Page, D.N.: Susskind’s challenge to the Hartle-Hawking no-boundary proposal and possible resolutions. JCAP 1, 004 (2007). arXiv:hep-th/0610199

  74. Page, D.N.: Return of the Boltzmann brains. Phys. Rev. D 78, 063536 (2008). arXiv:hep-th/0611158

  75. Page, D.N.: Is our universe decaying at an astronomical rate? Phys. Lett. B 669, 197 (2008). arXiv:hep-th/0612137

  76. Page, D.N.: Possible anthropic support for a decaying universe: a cosmic doomsday argument. arXiv:0907.4153

  77. Gott III, J.R.: Boltzmann brains: I’d rather see than be one. arXiv:0802.0233

  78. Aaronson, S.: The ghost in the quantum turing machine. arXiv:1306.0159

  79. Carroll, S.M.: What if time really exists? arXiv:0811.3772

  80. Boddy, K.K., Carroll, S.M.: Can the Higgs boson save us from the menace of the Boltzmann brains? arXiv:1308.4686

  81. Garriga, J., Vilenkin, A.: Recycling universe. Phys. Rev. D 57, 2230 (1998). arXiv:astro-ph/9707292

  82. Linde, A.D.: Sinks in the Landscape, Boltzmann Brains, and the Cosmological Constant Problem. JCAP 1, 022 (2007). arXiv:hep-th/0611043

  83. Polarski, D., Starobinsky, A.A.: Semiclassicality and decoherence of cosmological perturbations. Class. Quant. Grav. 13, 377 (1996). arXiv:gr-qc/9504030

  84. Lombardo, F.C., Nacir D.L.: Decoherence during inflation: the generation of classical inhomogeneities. Phys. Rev. D 72, 063506 (2005). arXiv:gr-qc/0506051

  85. Martineau, P.: On the decoherence of primordial fluctuations during inflation. Class. Quant. Grav. 24, 5817 (2007). arXiv:astro-ph/0601134

  86. Burgess, C.P., Holman, R., Hoover, D.: Decoherence of inflationary primordial fluctuations. Phys. Rev. D 77, 063534 (2008). arXiv:astro-ph/0601646

  87. Kiefer, C., Lohmar, I., Polarski, D., Starobinsky, A.A.: Pointer states for primordial fluctuations in inflationary cosmology. Class. Quant. Grav. 24, 1699 (2007). arXiv:astro-ph/0610700

  88. Prokopec, T., Rigopoulos, G.I.: Decoherence from Isocurvature perturbations in Inflation. JCAP 11, 029 (2007). arXiv:astro-ph/0612067

  89. Creminelli, P., Dubovsky, S., Nicolis, A., Senatore, L., Zaldarriaga, M.: The phase transition to slow-roll eternal inflation. JHEP 09, 036 (2008). arXiv:0802.1067

  90. Dubovsky, S., Senatore, L., Villadoro, G.: Universality of the volume bound in slow-roll eternal inflation. JHEP 05, 035 (2012). arXiv:1111.1725

  91. Martinec, E.J., Moore, W.E.: Modeling quantum gravity effects in inflation. arXiv:1401.7681

  92. BICEP2 Collaboration; Ade, P, et al.: BICEP2 I: Detection of b-mode polarization at degree angular scales. Phys. Rev. Lett. 112, 241101 (2014). arXiv:1403.3985

  93. Bousso, R.: Proliferation of de Sitter space. Phys. Rev. D 58, 083511 (1998). arXiv:hep-th/9805081

  94. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. I. Phys. Rev. 85, 166 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Bohm, D.: A suggested interpretation of the quantum theory in terms of ‘hidden’ variables. II. Phys. Rev. 85, 180 (1952)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  96. Dürr, D., Goldstein, S., Tumulka, R., Zanghì, N.: Bohmian mechanics and quantum field theory. Phys. Rev. Lett. 93, 090402 (2004)

    Article  MathSciNet  Google Scholar 

  97. Struyve, W.: Pilot-wave theory and quantum fields. Rept. Prog. Phys. 73, 106001 (2010). arXiv:0707.3685

  98. Goldstein, S., Struyve, W., Tumulka, R.: The Bohmian approach to the problems of cosmological quantum fluctuations. arXiv:1508.01017

  99. Ghirardi, G., Rimini, A., Weber, T.: A model for a unified quantum description of macroscopic and microscopic systems. In: Quantum Probability and Applications II, pp. 223–232. Springer (1985)

  100. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We have benefited from helpful discussions with Scott Aaronson, Charles Bennett, Alan Guth, James Hartle, Stefan Leichenauer, Spyridon Michalakis, Don Page, John Preskill, Jess Riedel, Charles Sebens, Paul Steinhardt, and several participants at the Foundational Questions Institute conference on The Physics of Information (though they might not agree with our conclusions). This research is funded in part by DOE Grant DE-FG02-92ER40701 and by the Gordon and Betty Moore Foundation through Grant 776 to the Caltech Moore Center for Theoretical Cosmology and Physics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean M. Carroll.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boddy, K.K., Carroll, S.M. & Pollack, J. De Sitter Space Without Dynamical Quantum Fluctuations. Found Phys 46, 702–735 (2016). https://doi.org/10.1007/s10701-016-9996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-9996-8

Keywords

Navigation