Skip to main content
Log in

Quantum Teleportation and Grover’s Algorithm Without the Wavefunction

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the same way as the quantum no-cloning theorem and quantum key distribution in two preceding papers, entanglement-assisted quantum teleportation and Grover’s search algorithm are generalized by transferring them to an abstract setting, including usual quantum mechanics as a special case. This again shows that a much more general and abstract access to these quantum mechanical features is possible than commonly thought. A non-classical extension of conditional probability and, particularly, a very special type of state-independent conditional probability are used instead of Hilbert spaces and wavefunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alfsen, E.M., Shultz, F.W.: Geometry of State Spaces of Operator Algebras. Springer, Berlin (2012)

    MATH  Google Scholar 

  2. Alfsen, E.M., Shultz, F.W.: State Spaces of Operator Algebras: Basic Theory, Orientations, and C*-Products. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Barnum, H., Barrett, J., Leifer, M., Wilce, A.: Teleportation in general probabilistic theories. Proc. Symp. Appl. Math. 71, 25–48 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beltrametti, E.G., Cassinelli, G., Rota, G.C.: The Logic of Quantum Mechanics. Cambridge University Press, Cambridge (1984)

    Book  MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, vol. 175, p. 8, Bangalore, India, Dec 1984

  6. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Beran, L.: Orthomodular Lattices. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  8. Brabec, J.: Compatibility in orthomodular posets. Časopis pro pěstování matematiky 104(2), 149–153 (1979)

    MathSciNet  MATH  Google Scholar 

  9. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454(1969), 339–354 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Deutsch, D., Jozsa, R.: Rapid solution of problems by quantum computation. Proc. R. Soc. Lond. A 439(1907), 553–558 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Dieks, D.: Communication by EPR devices. Phys. Lett. A 92(6), 271–272 (1982)

    Article  ADS  Google Scholar 

  13. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Fritz, T.: On the existence of quantum representations for two dichotomic measurements. J. Math. Phys. 51(5), Journal of Mathematical Physics (2010)

    Article  MathSciNet  Google Scholar 

  15. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)

  16. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  17. Kalmbach, G.: Orthomodular Lattices. Academic Press, London (1983)

    MATH  Google Scholar 

  18. Lee, C.M., Selby, J.H.: Deriving grover’s lower bound from simple physical principles. New J. Phys. 18(9), 093047 (2016)

    Article  ADS  Google Scholar 

  19. Niestegge, G.: Non-Boolean probabilities and quantum measurement. J. Phys. A Math. Gen. 34(30), 6031 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Niestegge, G.: An approach to quantum mechanics via conditional probabilities. Found. Phys. 38(3), 241–256 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Niestegge, G.: A representation of quantum measurement in order-unit spaces. Found. Phys. 38(9), 783–795 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Niestegge, G.: A hierarchy of compatibility and comeasurability levels in quantum logics with unique conditional probabilities. Commun. Theor. Phys. 54(6), 974 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Niestegge, G.: Conditional probability, three-slit experiments, and the Jordan algebra structure of quantum mechanics. Adv. Math. Phys. (2012). doi:10.1155/2012/156573

  24. Niestegge, G.: A generalized quantum theory. Found. Phys. 44(11), 1216–1229 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niestegge, G.: Non-classical conditional probability and the quantum no-cloning theorem. Phys. Scr. 90(9), 095101 (2015)

    Article  ADS  Google Scholar 

  26. Niestegge, G.: Quantum key distribution without the wavefunction. Preprint arXiv:1611.02515v1 [quant-ph] (2016)

  27. Pták, P., Pulmannová, S.: Orthomodular Structures as Quantum Logics. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  28. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, IEEE (1994)

  29. Sorkin, R.D.: Quantum mechanics as quantum measure theory. Mod. Phys. Lett. A 9(33), 3119–3127 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Wootters, W.K., Zurek, W.H.: A single quantum cannot be cloned. Nature 299(5886), 802–803 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerd Niestegge.

Annex

Annex

Lemma 5

Suppose that the quantum logic E satisfies the Assumptions 1, 2 and 3 and that \(\mathbb {P}(f|e) = p = \mathbb {P}(e|f)\) for some \(e,f \in E\). Then, for \(r = 1, 2, 3,\ldots \),

$$\begin{aligned} \mathbb {P}\Bigl (f|(S_e S_f)^{r}e\Bigr ) = \mathbb {P}\Bigl ((S_f S_e)^{r}f|e\Bigr ) = sin^{2}\Bigl ((2r+1)arcsin(\sqrt{p})\Bigr ). \end{aligned}$$

Proof

The first equality follows from the invariance of \(\mathbb {P}(\ |\ )\) under the automorphism \((S_f S_e)^{r}\), which is its own inverse. For the proof of the second equality, consider the following four elements in the order-unit space A: \(b_1 := e\), \(b_2 := f\), \(b_3 := U_{e^{\prime }} f\) and \(b_4 := U_{f^{\prime }} e\). Note that Lemmas 2(a) and 4 are repeatedly applied in the following calculations. \(S_f S_e b_1 = S_f S_e e = S_f e = 2 U_f e + 2 U_{f^{\prime }} e - e = 2 p f + 2 U_{f^{\prime }} e - e = - b_1 + 2 p b_2 + 2 b_4\)

Then use the identity \(S_e f = 2 U_e f + 2 U_{e^{\prime }} f - f = 2 p e + 2 U_{e^{\prime }} f - f\) to get

$$\begin{aligned} S_f S_e b_2= & {} S_f S_e f = 2 p S_f e + 2 S_f U_{e^{\prime }} f - S_f f \\= & {} 2 p (2 U_f e + 2 U_{f^{\prime }} e - e) + 2 (2 U_f U_{e^{\prime }} f + 2 U_{f^{\prime }} U_{e^{\prime }} f - U_{e^{\prime }} f) - f \\= & {} 2 p (2 p f + 2 U_{f^{\prime }} e - e) + 2 (2 (1-p)^{2} f + 2 U_{f^{\prime }} U_{e} f - U_{e^{\prime }} f) - f \\= & {} 2 p (2 p f + 2 U_{f^{\prime }} e - e) + 2 (2 (1-p)^{2} f + 2 p U_{f^{\prime }} e - U_{e^{\prime }} f) - f \\= & {} - 2 p e + (8p^{2} - 8p + 3) f - 2 U_{e^{\prime }} f + 8 p U_{f^{\prime }} e \\= & {} - 2 p b_1 + (8p^{2} - 8p + 3) b_2 - 2 b_3 + 8 p b_4 \end{aligned}$$
$$\begin{aligned} S_f S_e b_3= & {} S_f S_e U_{e^{\prime }} f = S_f U_{e^{\prime }} f = 2 U_f U_{e^{\prime }} f + 2 U_{f^{\prime }} U_{e^{\prime }} f - U_{e^{\prime }} f \\= & {} 2 (1-p)^{2} f + 2 U_{f^{\prime }} U_{e} f - U_{e^{\prime }} f = 2 (1-p)^{2} f + 2 p U_{f^{\prime }} e - U_{e^{\prime }} f \\= & {} 2 (1-p)^{2} b_2 - b_3 + 2 p b_4 \end{aligned}$$
$$\begin{aligned} S_f S_e b_4&= S_f S_e U_{f^{\prime }} e = 2 S_f U_e U_{f^{\prime }} e + 2 S_f U_{e^{\prime }} U_{f^{\prime }} e - S_f U_{f^{\prime }} e \\&= 2 (1 - p)^{2} S_f e + 2 S_f U_{e^{\prime }} U_{f} e - U_{f^{\prime }} e = 2 (1 - p)^{2} S_f e + 2 p S_f U_{e^{\prime }} f - U_{f^{\prime }} e \\&= 2 (1 - p)^{2} (2 U_f e + 2 U_{f^{\prime }}e - e) + 2 p ( 2 U_f U_{e^{\prime }} f + 2 U_{f^{\prime }} U_{e^{\prime }} f - U_{e^{\prime }} f ) - U_{f^{\prime }} e \\&= 2 (1 - p)^{2} (2 p f + 2 U_{f^{\prime }}e - e) + 2 p (2(1-p)^{2} f + 2 U_{f^{\prime }} U_{e} f - U_{e^{\prime }} f) - U_{f^{\prime }} e \\&= 2 (1 - p)^{2} (2 p f + 2 U_{f^{\prime }}e - e) + 2 p (2(1-p)^{2} f + 2 p U_{f^{\prime }} e - U_{e^{\prime }} f) - U_{f^{\prime }} e \\&= - 2 (1-p)^{2} e + 8 p (1-p)^{2} f - 2 p U_{e^{\prime }} f + (8 p^{2} - 8 p + 3) U_{f^{\prime }} e \\&= - 2 (1-p)^{2} b_1 + 8 p (1-p)^{2} b_2 - 2 p b_3 + (8 p^{2} - 8 p + 3) b_4 \end{aligned}$$

The linear subspace in A, generated by \(b_1, b_2, b_3, b_4\), is invariant under \(S_f S_e\), which follows from the above identities. With respect to this basis, the restriction of \(S_f S_e\) to this subspace is represented by the following matrix:

$$\begin{aligned} M := \begin{pmatrix} -1 &{}\quad - 2 p &{}\quad 0 &{}\quad -2 (1-p)^{2}\\ \\ 2 p &{}\quad 8p^{2} - 8p + 3 &{}\quad 2 (1-p)^{2} &{}\quad 8 p(1-p)^{2} \\ \\ 0 &{}\quad -2 &{}\quad -1 &{}\quad -2p \\ \\ 2 &{}\quad 8p &{}\quad 2p &{}\quad 8p^{2} - 8p + 3 \end{pmatrix} \end{aligned}$$

The Jordan form of this \(4\times 4\)matrix is now computed in two steps, each one basically dealing with the better manageable \(2\times 2\)-matrices. First consider the following matrix \(N_1\)

$$\begin{aligned} N_1 = \begin{pmatrix} 1-p &{}\quad 0 &{}\quad 1-p &{}\quad 0 \\ \\ 0 &{}\quad 1-p &{}\quad 0 &{}\quad 1-p \\ \\ -1 &{}\quad 0 &{}\quad 1 &{}\quad 0 \\ \\ 0 &{}\quad -1 &{}\quad 0 &{}\quad 1 \\ \end{pmatrix} \end{aligned}$$

and its inverse

$$\begin{aligned} N_1^{-1} = \frac{1}{2(1-p)} \begin{pmatrix} 1 \ &{}\quad \ 0 \ &{}\quad p-1 &{}\quad 0 \\ \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad p-1 \\ \\ 1 &{}\quad 0 &{}\quad 1-p &{}\quad 0 \\ \\ 0 &{}\quad 1 &{}\quad 0 &{}\quad 1-p \\ \end{pmatrix} \end{aligned}$$

Then

$$\begin{aligned} N_1^{-1}MN_1 = \begin{pmatrix} -1 &{}\quad 2-4p &{}\quad 0 &{}\quad 0 \\ \\ -2 + 4p &{}\quad (3-4p)(1-4p) &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad 0 &{}\quad -1 &{}\quad -2 \\ \\ 0 &{}\quad 0 &{}\quad 2 &{}\quad 3 \\ \end{pmatrix} \end{aligned}$$

The Jordan forms of the two \(2 \times 2\) submatrices top left and bottom right can be calculated separately. With

$$\begin{aligned} N_2 = \begin{pmatrix} 1 &{}\quad 1 &{}\quad 0 &{}\quad 0 \\ \\ 1 - 2p + 2 \sqrt{p(1-p)} \ i &{}\quad 1 - 2p - 2 \sqrt{p(1-p)} \ i &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad -2 \\ \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad 2 \end{pmatrix} \end{aligned}$$

and

$$\begin{aligned} N_2^{-1} = \begin{pmatrix} \frac{1}{2} + \frac{1-2p}{4 \sqrt{p(1-p)}} i &{}\quad \frac{-1}{4\sqrt{p(1-p)}} i &{}\quad 0 &{}\quad 0 \\ \\ \frac{1}{2} - \frac{1-2p}{4 \sqrt{p(1-p)}} i &{}\quad \frac{1}{4\sqrt{p(1-p)}} i &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 \\ \\ 0 &{}\quad 0 &{}\quad 0 &{}\quad \frac{1}{2} \\ \end{pmatrix} \end{aligned}$$

the desired Jordan form of M is:

$$\begin{aligned} N_2^{-1} N_1^{-1} M N_1 N_2 = \begin{pmatrix} \alpha _1 &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad \alpha _2 &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 \\ \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 1 \\ \end{pmatrix} \end{aligned}$$

where

$$\begin{aligned} \alpha _1 = 8p^{2} - 8p + 1 + 4(1-2p) \sqrt{p(1-p)} \ i, \end{aligned}$$
$$\begin{aligned} \alpha _2 = 8p^{2} - 8p + 1 - 4(1-2p) \sqrt{p(1-p)} \ i \end{aligned}$$

and 1 are the eigenvalues of M. This (almost diagonal) matrix can now easily be raised to the r-th power, and \(M^{r}\) can be calculated:

$$\begin{aligned} M^{r}&= N_1 N_2 \begin{pmatrix} \alpha _1^{r} &{}\quad 0 &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad \alpha _2^{r} &{}\quad 0 &{}\quad 0 \\ \\ 0 &{}\quad 0 &{}\quad 1 &{}\quad 0 \\ \\ 0 &{}\quad 0 &{}\quad r &{}\quad 1 \\ \end{pmatrix} N_2^{-1} N_1^{-1}\\&= \begin{pmatrix} \cdots &{}\quad - r + \frac{1}{4\sqrt{p(1-p)}} Im (\alpha _1^{r}) &{}\quad \cdots &{}\quad \cdots \\ \\ \cdots &{}\quad \frac{1}{2}(2 r + 1 + Re(\alpha _1^{r}) + \frac{1-2p}{2\sqrt{p(1-p)}} Im(\alpha _1^{r})) &{}\quad \cdots &{}\quad \cdots \\ \\ \cdots &{}\quad \cdots &{}\quad \cdots &{}\quad \cdots \\ \\ \cdots &{}\quad \frac{1}{2(1-p)} (2 r + 1 - Re(\alpha _1^{r}) - \frac{1-2p}{2\sqrt{p(1-p)}} Im(\alpha _1^{r})) &{}\quad \cdots &{}\quad \cdots \\ \end{pmatrix} \end{aligned}$$

Here, Re(z) [Im(z)] denotes the real [imaginary] part of the complex number z. Since \(\alpha _2\) is the complex conjugate of \(\alpha _1\), it does not anymore appear in this matrix. Note that only the second column is displayed, since only these entries will be used for the following calculation of \(U_e (S_f S_e)^{r} b_2 = U_e (S_f S_e)^{r} f \). The third entry in this column is not needed, since \(U_e b_3 = U_e U_{e^{\prime }} f = 0\). Moreover, recall that \(U_e b_1 = U_e e = e\), \(U_e b_2 = U_e f = p e\) and \(U_e b_4 = U_e U_{f^{\prime }} e= (1 - p)^{2}e\).

$$\begin{aligned}&U_e (S_f S_e)^{r} f\\&\quad = \left( - r + \frac{1}{4\sqrt{p(1-p)}} Im (\alpha _1^{r}) \right) U_e(b_1) \\&\qquad + \frac{1}{2}\left( 2 r + 1 + Re(\alpha _1^{r}) + \frac{1-2p}{2\sqrt{p(1-p)}} Im(\alpha _1^{r})\right) U_e(b_2) \\&\qquad + \frac{1}{2(1-p)} \left( 2 r + 1 - Re(\alpha _1^{r}) - \frac{1-2p}{2\sqrt{p(1-p)}} Im(\alpha _1^{r})\right) U_e(b_4)\\&\quad = \left( - r + \frac{1}{4\sqrt{p(1-p)}} Im (\alpha _1^{r}) \right) e\\&\qquad + \frac{1}{2} \left( 2 r + 1 + Re(\alpha _1^{r}) + \frac{1-2p}{2\sqrt{p(1-p)}} Im(\alpha _1^{r}) \right) p e\\&\qquad + \frac{1}{2(1-p)} \left( 2 r + 1 - Re(\alpha _1^{r}) - \frac{1-2p}{2\sqrt{p(1-p)}} Im(\alpha _1^{r}) \right) (1 -p)^{2}e\\&\quad = \left( \frac{1}{2} - \frac{1-2p}{2} Re(\alpha _1^{r}) + \sqrt{p(1-p)} Im(\alpha _1^{r}) \right) e \end{aligned}$$

Therefore

$$\begin{aligned} \mathbb {P}((S_f S_e)^{r}f|e) = \frac{1}{2} - \frac{1-2p}{2} Re(\alpha _1^{r}) + \sqrt{p(1-p)} Im(\alpha _1^{r}) \end{aligned}$$

Since \(\left| \alpha _1 \right| = 1\), \(\alpha _1 = e^{it}\) with \(t = arcsin (4(1-2p)\sqrt{p(1-p)})\). Furthermore, define \(s := arcsin(2\sqrt{p(1-p)}\). Then \(cos(s) = 1-2p \), since \((1-2p)^{2} + (2\sqrt{p(1-p)})^{2} = 1\), and

$$\begin{aligned} \mathbb {P}(f|(S_e S_f)^{r}e)&= \frac{1}{2} - \frac{1}{2} \Bigl ( cos(s) cos(rt) - sin(s) sin (rt) \Bigr ) \\&= \frac{1}{2} - \frac{1}{2} cos(s + rt) \\&= sin^{2} \Bigl ( \frac{s + rt}{2} \Bigr ) \\&= sin^{2} \Bigl ( (2r+1)arcsin(\sqrt{p}) \Bigr ). \end{aligned}$$

The second and the third equality follow from the trigonometric identities \(cos(x) + cos(y) = cos(x) cos(y) - sin(x) sin(y)\) and \(sin^{2}(\frac{x}{2}) = \frac{1 - cos(x)}{2}\). The last equality follows from the definitions of s and t and the following identity:

$$\begin{aligned} arcsin\left( 2\sqrt{x - x^{2}}\right) + r \ arcsin\left( 4(1-2x)\sqrt{x-x^{2}}\right) - (4r+2) arcsin\left( \sqrt{x}\right) = 0 \end{aligned}$$

by inserting \(x = p\), which then gives \(s+rt = (4r+2) arcsin(\sqrt{p}) \). This identity can be proved by differentiation with respect to x: The derivative is constantly zero and the function thus constant; checking the function for \(x=0\) yields that it is constantly zero. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niestegge, G. Quantum Teleportation and Grover’s Algorithm Without the Wavefunction. Found Phys 47, 274–293 (2017). https://doi.org/10.1007/s10701-016-0060-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0060-5

Keywords

Navigation