Skip to main content
Log in

Particle on a Torus Knot: A Hamiltonian Analysis

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

We have studied the dynamics and symmetries of a particle constrained to move in a torus knot. The Hamiltonian system turns out to be Second Class in Dirac’s formulation and the Dirac brackets yield novel noncommutative structures. The equations of motion are obtained for a path in general where the knot is present in the particle orbit but it is not restricted to a particular torus. We also study the motion when it is restricted to a specific torus. The rotational symmetries are studied as well. We have also considered the behavior of small fluctuations of the particle motion about a fixed torus knot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. For reviews see [1518].

References

  1. Snyder, H.S.: Quantized space-time. Phys. Rev. 71, 38 (1947)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys.Rev. D52 1108–1118 (1995). arXiv:math/9412167

  3. Seiberg, N., Witten, E.: String theory and noncommutative geometry. JHEP 9909, 032 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Amelino-Camelia, G.: Relativity: special treatment. Nature 418, 34–35 (2002)

    Article  ADS  MATH  Google Scholar 

  5. Amelino-Camelia, G.: Testable scenario for relativity with minimum-length. Phys. Lett. B 510, 255–263 (2001)

    Article  ADS  MATH  Google Scholar 

  6. Banerjee, R., Kulkarni, S., Samanta, S.: Deformed symmetry in snyder space and relativistic particle dynamics. JHEP 0605, 077 (2006). arXiv:hep-th/0602151

  7. Ghosh, S., Pal, P.: Deformed Special Relativity and Deformed Symmetries in a Canonical Framework. Phys. Rev. D 75, 105021 (2007). arXiv:hep-th/0702159

  8. Das, S., Vagenas, E.C.: Universality of quantum gravity corrections. Phys. Rev. Lett. 101, 221301 (2008). arXiv:0810.5333

  9. Brau, F.: Minimal length uncertainty relation and hydrogen atom. J. Phys. A 32, 7691–7696 (1999). arXiv:quant-ph/9905033

  10. Scardigli, F., Casadio, R.: Generalized uncertainty principle, extra-dimensions and holography. Class. Quant. Grav. 20, 3915–3926 (2003). arXiv:hep-th/0307174

  11. Ghosh, S., Mignemi, S.: Quantum mechanics in de Sitter space. Int. J. Theor. Phys. 50 1803–1808 (2011). arXiv:0911.5695

  12. Quesne, C., Tkachuk, V. M.: Lorentz-covariant deformed algebra with minimal length and application to the 1+1-dimensional Dirac oscillator. J. Phys. A 39 10909–10922 (2006). arXiv:quant-ph/0604118

  13. Chang, L.N., Minic, D., Okamura, N., Takeuchi, T.: Exact solution of the harmonic oscillator in arbitrary dimensions with minimal length uncertainty relations. Phys. Rev. D 65, 125027 (2002). arXiv:hep-th/0111181

  14. Pramanik, S., Ghosh, S.: GUP-based and snyder non-commutative algebras, relativistic particle models and deformed symmetries: a unified approach. Int. J. Mod. Phys. A 28, 1350131 (2013). arXiv:1301.4042

  15. Pramanik, S., Ghosh, S., Pal, P.: Electrodynamics of a generalized charged particle in doubly special relativity framework. Ann. Phys. 346 113 (2014). arXiv:1212.6881

  16. Douglas, M.R., Nekrasov, N.A.: Noncommutative field theory. Rev. Mod. Phys. 73, 977–1029 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Szabo, R.J.: Quantum field theory on noncommutative spaces. Phys. Rept. 378, 207–299 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Banerjee, R., Chakraborty, B., Ghosh, S., Mukherjee, P., Samanta, S.: Topics in noncommutative geometry inspired physics. Found. Phys. 39, 1297–1345 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Sreedhar, V. V.: The classical and quantum mechanics of a particle on a knot. Ann. Phys. doi:10.1016/j.aop.2015.04.004. arXiv:1501.01098 [quant-ph]

  20. Ohnuki, Y., Kitakado, S.: On quantum mechanics on a compact space. Mod. Phys. Lett. A 7, 2477 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Coleman, S.: Aspects of Symmetry. Cambridge University Press, Cambridge (1988)

    Google Scholar 

  22. Wilczek, F.: Fractional Statistics and Anyon Superconductivity. World Scientific Publishing Company Pvt, Ltd, Singapore (1990)

    Book  MATH  Google Scholar 

  23. Gorsky, A., Milekhin, A.: Condensates and instanton—torus knot duality. Hidden Phys. UV Scale. arXiv:1412.8455

  24. Nejad, S. A., Dehghani, M., Monemzadeh, M.: Lagrange multiplier and Wess-Zumino variable as large extra dimensions in the torus universe. arXiv:1508.01866

  25. Floreanini, R., Peracci, R., Sezgin, E.: Quantum mechanics on the circle and W(1+infinity). Phys. Lett. B 271, 372–376 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dirac, P.A.M.: Lectures on Quantum Mechanics. Yeshiva University Press, New York (1964)

    MATH  Google Scholar 

  27. Nguyen, S., Turski, L.A.: Examples of the Dirac approach to dynamics of systems with constraints. Physica A 290, 431–444 (2001)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics. McGraw Hill, New York (1953)

    MATH  Google Scholar 

Download references

Acknowledgments

P. D. acknowledges the financial support from INSPIRE, DST, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subir Ghosh.

Appendices

Appendix 1

In the terminology of Dirac constraint analysis [26], the noncommutating constraints are termed as SCC and the commutating constraints, that induces local gauge invariance, are named First Class Constraints (FCC). In a generic Second Class system with n SCCs \(\chi _i\), \(i=1,2,..n\), the modified symplectic structure (or Dirac brackets) are defined in the following way,

$$\begin{aligned} \{A,B\}^*=\{A,B\}-\{A,\chi _i\}\{\chi ^i,\chi ^j\}^{-1}\{\chi _j,B\}, \end{aligned}$$
(62)

where \(\{\chi ^i,\chi ^j\}\) is the invertible constraint matrix. From now on we will use \(\{,\}\) notation instead of \(\{,\}^*\) for Dirac brackets.

In Cartesian coordinate system, the non-zero constraints matrix element reads

$$\begin{aligned} \{\psi _1(r),\psi _2(p,r)\}=\{\psi _1(r),p.A(r)\}=\frac{\partial \psi _1}{\partial x_i}A_i=A_iA_i=A^2 \end{aligned}$$
(63)

where, \(A_i=\frac{\partial \psi _1}{\partial x_i},~A^2=\frac{4a^2}{\phi }+\frac{\alpha ^2}{r^2-x_3^2}.\) Thus the inverse matrix element can be written as,

$$\begin{aligned} \{\psi _1(r),\psi _2(p,r)\}^{-1}=-\frac{1}{A^2} \end{aligned}$$
(64)

The Dirac bracket can be computed in the following way,

$$\begin{aligned} \{x_i,p_j\}_{D.B.}= & {} \delta _{ij}-\{x_i,\psi _2\}\{\psi _2,\psi _1\}^{-1}\{\psi _1,p_j\} \nonumber \\= & {} \delta _{ij}-\{x_i,p.A\}\{\psi _2,\psi _1\}^{-1}\frac{\partial \psi _1}{\partial x_j}=\delta _{ij}-\frac{A_iA_j}{A^2}. \end{aligned}$$
(65)

Appendix 2

In toroidal coordinate system, the non-zero constraints matrix element is

$$\begin{aligned} \{\chi _1,\chi _2\}=\frac{p^2 \sinh ^2\eta +q^2}{\sinh ^2\eta }. \end{aligned}$$

Thus the inverse matrix element can be written as

$$\begin{aligned} \{\chi _1,\chi _2\}^{-1}=-\frac{\sinh ^2\eta }{p^2\sinh ^2\eta +q^2}. \end{aligned}$$
(66)

The Dirac bracket

$$\begin{aligned} \{\phi ,p_\phi \} \end{aligned}$$

can be computed in the following way,

$$\begin{aligned} \{\phi ,p_\phi \}_{D.B.}=\{\phi ,p_\phi \}-\{\phi ,\chi _2\}\{\chi _2,\chi _1\}^{-1}\{\chi _1,p_\phi \}\nonumber \\ =1-\frac{q^2}{p^2\sinh ^2\eta +q^2}=\frac{\sinh ^2\eta }{\alpha ^2+\sinh ^2\eta } \end{aligned}$$
(67)

where \(\alpha =-\frac{q}{p}\).

Appendix 3

We provide some useful identities connecting the toroidal coordinate system to Cartesian coordinate system. The unit vectors are related as,

$$\begin{aligned} \hat{i}= & {} \left( \cosh \eta \cos \phi -\frac{\sinh ^2\eta \cos \phi }{\cosh \eta -\cos \theta }\right) ~~\hat{\eta }-\frac{\sinh \eta \sin \theta \cos \phi }{\cosh \eta -\cos \theta }~~\hat{\theta }-\sin \phi ~~\hat{\phi },\\ \hat{j}= & {} \left( \cosh \eta \sin \phi -\frac{\sinh ^2\eta \sin \phi }{\cosh \eta -\cos \theta }\right) ~~\hat{\eta }-\frac{\sinh \eta \sin \theta \sin \phi }{\cosh \eta -\cos \theta }~~\hat{\theta }+\cos \phi ~~\hat{\phi },\\ \hat{k}= & {} -\frac{\sin \theta \sinh \eta }{\cosh \eta -\cos \theta }~~\hat{\eta }+\frac{\cos \theta \cosh \eta -1}{\cosh \eta -\cos \theta }~~\hat{\theta }. \end{aligned}$$

The conjugate momenta are related as,

$$\begin{aligned} p_x=\frac{\cos \phi (1-\cos \theta \cosh \eta )p_\eta }{a}-\frac{(\sinh \eta \cos \phi \sin \theta ) p_\theta }{a}-\frac{\sin \phi (\cosh \eta -\cos \theta )p_\phi }{a\sinh \eta }, \end{aligned}$$
(68)
$$\begin{aligned} p_y=\frac{\sin \phi (1-\cos \theta \cosh \eta )p_\eta }{a}-\frac{(\sinh \eta \sin \phi \sin \theta ) p_\theta }{a}+\frac{\cos \phi (\cosh \eta -\cos \theta )p_\phi }{a\sinh \eta } , \end{aligned}$$
(69)
$$\begin{aligned} p_z=\frac{(\cosh \eta \cos \theta -1)p_\theta }{a}-\frac{\sin \theta \sinh \eta }{a}p_\eta . \end{aligned}$$
(70)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, P., Ghosh, S. Particle on a Torus Knot: A Hamiltonian Analysis. Found Phys 46, 1649–1665 (2016). https://doi.org/10.1007/s10701-016-0035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0035-6

Keywords

Navigation