Skip to main content
Log in

Predictive Statistical Mechanics and Macroscopic Time Evolution: Hydrodynamics and Entropy Production

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

In the previous papers (Kuić et al. in Found Phys 42:319–339, 2012; Kuić in arXiv:1506.02622, 2015), it was demonstrated that applying the principle of maximum information entropy by maximizing the conditional information entropy, subject to the constraint given by the Liouville equation averaged over the phase space, leads to a definition of the rate of entropy change for closed Hamiltonian systems without any additional assumptions. Here, we generalize this basic model and, with the introduction of the additional constraints which are equivalent to the hydrodynamic continuity equations, show that the results obtained are consistent with the known results from the nonequilibrium statistical mechanics and thermodynamics of irreversible processes. In this way, as a part of the approach developed in this paper, the rate of entropy change and entropy production density for the classical Hamiltonian fluid are obtained. The results obtained suggest the general applicability of the foundational principles of predictive statistical mechanics and their importance for the theory of irreversibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kuić, D., Županović, P., Juretić, D.: Macroscopic time evolution and MaxEnt inference for closed systems with Hamiltonian dynamics. Found. Phys. 42, 319–339 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Kuić, D: Predictive statistical mechanics and macroscopic time evolution. A model for closed Hamiltonian systems. (2015). arXiv:1506.02622

  3. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423, 623–656 (1948). Reprinted. In: Shannon C.E., Weaver, W.: The Mathematical Theory of Communication. University of Illinois Press, Urbana (1949)

  4. Jaynes, E.T.: Information theory and statistical mechanics. Phys. Rev. 106, 620–630 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Jaynes, E.T.: Information theory and statistical mechanics. II. Phys. Rev. 108, 171–190 (1957)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Jaynes, E.T.: Information theory and statistical mechanics. In: Ford, K.W. (ed.) 1962 Brandeis Lectures in Theoretical Physics, vol. 3, pp. 181–218. W. A. Benjamin Inc, New York (1963)

    Google Scholar 

  7. Jaynes, E.T.: Where do we stand on maximum entropy? In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism, pp. 15–118. MIT Press, Cambridge (1979)

    Google Scholar 

  8. Jaynes, E.T.: Gibbs vs Boltzmann entropies. Am. J. Phys. 33, 391–398 (1965)

    Article  ADS  MATH  Google Scholar 

  9. Jaynes, E.T.: The minimum entropy production principle. Ann. Rev. Phys. Chem. 31, 579–601 (1980)

    Article  ADS  Google Scholar 

  10. Jaynes, E.T.: Macroscopic prediction. In: Haken, H. (ed.) Complex Systems—Operational Approaches in Neurobiology, Physics, and Computers, pp. 254–269. Springer, Berlin (1985)

    Chapter  Google Scholar 

  11. Jaynes, E.T.: The second law as physical fact and as human inference. Unpublished manuscript (1990). http://bayes.wustl.edu/etj/node2.html

  12. Grandy, W.T.: Principle of maximum entropy and irreversible processes. Phys. Rep. 62, 175–266 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  13. Grandy, W.T.: Time evolution in macroscopic systems. I. Equations of motion. Found. Phys. 34, 1–20 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Grandy, W.T.: Time evolution in macroscopic systems. II. The entropy. Found. Phys. 34, 21–57 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Grandy, W.T.: Time evolution in macroscopic systems. III. Selected applications. Found. Phys. 34, 771–813 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Grandy, W.T.: Entropy and the Time Evolution of Macroscopic Systems. Oxford University Press, Oxford (2008)

    Book  MATH  Google Scholar 

  17. Zubarev, D., Morozov, V., Röpke, G.: Statistical Mechanics of Nonequilibrium Processes. Basic Concepts, Kinetic Theory, vol. 1. Akademie Verlag, Berlin (1996)

  18. Zwanzig, R.: Ensemble method in the theory of irreversibility. J. Chem. Phys. 33, 1338–1341 (1960)

    Article  ADS  MathSciNet  Google Scholar 

  19. Zwanzig, R.: On the identity of three generalized master equations. Physica 30, 1109–1123 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  20. Robertson, B.: Equations of motion in nonequilibrium statistical mechanics. Phys. Rev. 144, 151–161 (1966)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Robertson, B.: Application of maximum entropy to nonequilibrium statistical mechanics. In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism. MIT Press, Cambridge (1979)

    Google Scholar 

  22. Zubarev, D.N., Kalashnikov, V.P.: Equivalence of various methods in the statistical mechanics of irreversible processes. Teor. Math. Fiz. 7, 372–394 (1971)

    MATH  Google Scholar 

  23. Evans, D.J., Morriss, G.: Statistical Mechanics of Nonequilibrium Liquids, 2nd edn. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  24. de Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. North-Holland, Amsterdam (1962)

    MATH  Google Scholar 

  25. Balian, R.: From Microphysics to Macrophysics: Methods and Applications of Statistical Physics, vol. 2. Springer, Berlin (2007)

  26. Divergence theorem. L.D. Kudryavtsev (originator), Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/

  27. Wan, F.Y.M.: Introduction to the Calculus of Variations and Its Applications. Chapman & Hall, New York (1995)

    MATH  Google Scholar 

  28. Callen, H.B.: Thermodynamics and an Introduction to Thermostatistics, 2nd edn. Wiley, New York (1985)

    MATH  Google Scholar 

  29. González, D., Davis, S., Gutiérrez, G.: Newtonian dynamics from the principle of maximum caliber. Found. Phys. 44, 923–931 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Davis, S., González, D.: Hamiltonian formalism and path entropy maximization. J. Phys. A 48, 425003 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domagoj Kuić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuić, D. Predictive Statistical Mechanics and Macroscopic Time Evolution: Hydrodynamics and Entropy Production. Found Phys 46, 891–914 (2016). https://doi.org/10.1007/s10701-016-0009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-016-0009-8

Keywords

Navigation