Skip to main content
Log in

Hydrodynamics of the Physical Vacuum: II. Vorticity Dynamics

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Physical vacuum is a special superfluid medium populated by enormous amount of virtual particle-antiparticle pairs. Its motion is described by the modified Navier–Stokes equation: (a) the pressure gradient divided by the mass density is replaced by the gradient from the quantum potential; (b) time-averaged the viscosity vanishes, but its variance is not zero. Vortex structures arising in this medium show infinitely long lifetime owing to zero average viscosity. The nonzero variance is conditioned by exchanging the vortex energy with zero-point vacuum fluctuations. The vortex has a non-zero core where the orbital speed vanishes. The speed reaches a maximal value on the core wall and further it decreases monotonically. The vortex trembles around some average value and possesses by infinite life time. The vortex ball resulting from topological transformation of the vortex ring is considered as a model of a particle with spin. Anomalous magnetic moment of electron is computed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. see in Wikipedia: ‘Tropical cyclone’.

  2. The name “vortex ball” originates from the ball lighting—an astonishing electromagnetic bundle of energy emerging often during thunderstorms.

  3. Wikipedia: ’color wheel’.

  4. This is the most accurate value given in Wikipedia: ‘Electron magnetic moment’.

  5. One can guess that the helicoidal vortex rings are similar to strings [20] after reducing them onto the 3D-brane, to our three-dimensional space.

References

  1. Agamalyan, M.M., Drabkin, G.M., Sbitnev, V.I.: Spatial spin resonance of polarized neutrons. A tunable slow neutron filter. Phys. Rep. 168(5), 265–303 (1988). doi:10.1016/0370-1573(88)90081-6

    Article  ADS  Google Scholar 

  2. Benseny, A., Albareda, G., Sanz, A.S., Mompart, J., Oriols, X.: Applied Bohmian mechanics. Eur. Phys. J. D 68, 286–328 (2014). doi:10.1140/epjd/e2014-50222-4

    Article  ADS  Google Scholar 

  3. Bush, J.W.M.: Pilot-wave hydrodynamics. Annu. Rev. Fluid Mech. 47, 26992 (2015). doi:10.1146/annurev-fluid-010814-014506

    Article  Google Scholar 

  4. de Broglie, L.: Interpretation of quantum mechanics by the double solution theory. Ann. Fond. Louis Brog. 12(4), 1–22 (1987)

    Google Scholar 

  5. Feynman, R.P., Hibbs, A.: Quantum Mechanics and Path Integrals. McGraw Hill, New York (1965)

    MATH  Google Scholar 

  6. Kevlahan, N.K.R., Farge, M.: Vorticity filaments in two-dimensional turbulence: creation, stability and effect. J. Fluid Mech. 346(9), 49–76 (1997). doi:10.1017/S0022112097006113

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Kundu, P., Cohen, I.: Fluid Mechanics, pp. 92101–94495. Academic Press, San Diego (2002)

    Google Scholar 

  8. Lighthill, M.J.: An Informal Introduction to Theoretical Fluid Mechanics. Oxford University Press, Oxford (1986)

    MATH  Google Scholar 

  9. Mandache, N.B.: On the physical origin of the anomalous magnetic moment of electron. arXiv:1307.2063 (2013)

  10. Martins, A.A.: Fluidic electrodynamics: on parallels between electromagnetic and fluidic inertia. arXiv:1202.4611 (2012)

  11. Sbitnev, V.I.: Particle with spin in a magnetic field—the Pauli equation and its splitting into two equations for real functions (in Russian). Quantum Magic 5(2), 2112–2131. http://quantmagic.narod.ru/volumes/VOL522008/p2112.html (2008)

  12. Sbitnev, V.I.: Physical vacuum is a special superfluid medium, chap 12. In: Pahlavani, M.R. (ed.) Selected Topics in Applications of Quantum Mechanics, pp. 345–373. InTech, Rijeka (2015)

    Google Scholar 

  13. Sbitnev, V.I.: Hydrodynamics of the physical vacuum: I. Scalar quantum sector. Found. Phys. 46(5), 606–619 (2016). doi:10.1007/s10701-015-9980-8

  14. Schwinger, J.: On quantum-electrodynamics and the magnetic moment of the electron. Phys. Rev. 73, 416–418 (1948). doi:10.1103/PhysRev.73.416

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Sommerfield, C.M.: The magnetic moment of the electron. Ann. Phys. 5(1), 26–57 (1958). doi:10.1016/0003-4916(58)90003-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Sonin, E.B.: Dynamics of helical vortices and helical-vortex rings. Europhys. Lett. 97, 46002 (2012). doi:10.1209/0295-5075/97/46002

    Article  ADS  Google Scholar 

  17. Tryggeson, H.: Analytical Vortex Solutions to the Navier-Stokes Equation. Thesis for the degree of Doctor of Philosophy. Växjö University, Sweden. http://www.diva-portal.org/smash/get/diva2:205082/FULLTEXT01 (2007)

  18. Volovik, G.E.: The Universe in a Helium Droplet. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  19. Wu, J.-Z., Ma, H.-Y., Zhou, M.D.: Vorticity and Vortex Dynamics. Springer, Heidelberg (2006)

    Book  Google Scholar 

  20. Yau, S.T., Nadis, S.: The Shape of Inner Space. String Theory and the Geometry of the Universe’s Hidden Dimensions. Basic Books, New York (2010)

    MATH  Google Scholar 

Download references

Acknowledgments

The author thanks Denise Puglia, Mike Cavedon, and Pat Noland for useful and valuable remarks and offers. The author thanks also the reviewers for the constructive critique and proposals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriy I. Sbitnev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sbitnev, V.I. Hydrodynamics of the Physical Vacuum: II. Vorticity Dynamics. Found Phys 46, 1238–1252 (2016). https://doi.org/10.1007/s10701-015-9985-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-015-9985-3

Keywords

Navigation