# Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics

- 596 Downloads
- 10 Citations

## Abstract

In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer’s perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.

## Keywords

Quantum ontology Non-locality Probabilities in quantum mechanics Quantization Born’s rule Contextual objectivity## Notes

### Acknowledgments

The authors thank Nayla Farouki for essential contributions, especially in the Appendix, and Francois Dubois, Franck Laloë, Maxime Richard, Augustin Baas, Cyril Branciard for many useful discussions.

## References

- 1.Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**47**, 777–780 (1935)CrossRefADSMATHGoogle Scholar - 2.Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev.
**48**, 696–702 (1935)CrossRefADSMATHGoogle Scholar - 3.Heisenberg, W.: The Physical Principles of the Quantum Theory. Dover, New York (1949)MATHGoogle Scholar
- 4.Bell, J.S.: On the Einstein–Podolski–Rosen paradox. Physics
**1**, 195 (1964)Google Scholar - 5.Bell, J.S.: Against measurement. Phys World
**8**, 33–40 (1990)CrossRefGoogle Scholar - 6.Aspect, A.: Bell’s inequality test: more ideal than ever. Nature
**398**, 189–190 (1999)CrossRefADSGoogle Scholar - 7.Mermin, D.: Is the moon here when nobody looks? Reality and the quantum theory. Phys. Today
**38**, 38–47 (1985)CrossRefGoogle Scholar - 8.Grangier, P.: Contextual objectivity: a realistic interpretation of quantum mechanics. Eur. J. Phys.
**23**, 331 (2002)CrossRefGoogle Scholar - 9.Grangier, P.: Contextual objectivity and the quantum formalism. Int. J. Quantum Inf.
**3**(1), 17–22 (2005)CrossRefMATHGoogle Scholar - 10.Mermin, D.: Quantum mechanics: fixing the shifty split. Phys. Today
**65**(7), 8 (2012)CrossRefGoogle Scholar - 11.Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys.
**8**, 475–478 (2012)CrossRefGoogle Scholar - 12.Laloë, F.: Do We Really Understand Quantum Mechanics. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
- 13.Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing vol. 175, 8 (1984)Google Scholar
- 14.Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955)MATHGoogle Scholar
- 15.Auffèves, A., Grangier P.: A simple derivation of Born’s rule with and without Gleason’s theorem, arXiv:1505.01369
- 16.Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech.
**6**(6), 885–893 (1957)MathSciNetMATHGoogle Scholar - 17.Cohen-Tannoudji, C., Diu, B., Laloe, F.: Mécanique Quantique. Hermann, Paris (1977)Google Scholar
- 18.Grangier, P., Levenson, J.A., Poizat, J.P.: Quantum non-demolition measurements in optics. Nature
**396**, 537–542 (1998). and references thereinCrossRefADSGoogle Scholar - 19.Peres, A., Zurek, W.H.: Is quantum theory universally valid? Am. J. Phys.
**50**, 807 (1982)CrossRefADSGoogle Scholar - 20.Bohm, D., Bub, J.: A proposed solution to the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys.
**38**, 3 (1966)MathSciNetMATHGoogle Scholar - 21.Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D
**34**, 2 (1986)CrossRefMathSciNetMATHGoogle Scholar - 22.Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys.
**35**, 1637 (1996)CrossRefMathSciNetMATHGoogle Scholar - 23.Griffiths, R.B.: Consistent Quantum Mechanics. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
- 24.Schlosshauer, M.A.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys.
**76**, 1267–1305 (2004)CrossRefADSGoogle Scholar - 25.Rèdei, M., Summers, S.J.: Quantum probability theory. Stud. History Philos. Modern Phys.
**38**, 390–417 (2007)CrossRefMathSciNetMATHGoogle Scholar - 26.Brukner, C., Zeilinger, A.: Information invariance and quantum probabilities. Found. Phys.
**39**, 677–689 (2009)CrossRefADSMathSciNetMATHGoogle Scholar - 27.Hardy L.: Reformulating and Reconstructing Quantum Theory. arXiv:1104.2066v1
- 28.Zurek, W.H.: Quantum darwinism, classical reality, and the randomness of quantum jumps. Phys. Today
**67**, 44–50 (2014)CrossRefGoogle Scholar - 29.Schlosshauer, M., Fine, A.: On Zurek’s derivation of the Born rule. Found. Phys.
**35**(2), 197–213 (2005)CrossRefADSMathSciNetMATHGoogle Scholar