Foundations of Physics

, Volume 46, Issue 2, pp 121–137 | Cite as

Contexts, Systems and Modalities: A New Ontology for Quantum Mechanics



In this article we present a possible way to make usual quantum mechanics fully compatible with physical realism, defined as the statement that the goal of physics is to study entities of the natural world, existing independently from any particular observer’s perception, and obeying universal and intelligible rules. Rather than elaborating on the quantum formalism itself, we propose a new quantum ontology, where physical properties are attributed jointly to the system, and to the context in which it is embedded. In combination with a quantization principle, this non-classical definition of physical reality sheds new light on counter-intuitive features of quantum mechanics such as the origin of probabilities, non-locality, and the quantum-classical boundary.


Quantum ontology Non-locality Probabilities in quantum mechanics Quantization Born’s rule Contextual objectivity  



The authors thank Nayla Farouki for essential contributions, especially in the Appendix, and Francois Dubois, Franck Laloë, Maxime Richard, Augustin Baas, Cyril Branciard for many useful discussions.


  1. 1.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefADSMATHGoogle Scholar
  2. 2.
    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696–702 (1935)CrossRefADSMATHGoogle Scholar
  3. 3.
    Heisenberg, W.: The Physical Principles of the Quantum Theory. Dover, New York (1949)MATHGoogle Scholar
  4. 4.
    Bell, J.S.: On the Einstein–Podolski–Rosen paradox. Physics 1, 195 (1964)Google Scholar
  5. 5.
    Bell, J.S.: Against measurement. Phys World 8, 33–40 (1990)CrossRefGoogle Scholar
  6. 6.
    Aspect, A.: Bell’s inequality test: more ideal than ever. Nature 398, 189–190 (1999)CrossRefADSGoogle Scholar
  7. 7.
    Mermin, D.: Is the moon here when nobody looks? Reality and the quantum theory. Phys. Today 38, 38–47 (1985)CrossRefGoogle Scholar
  8. 8.
    Grangier, P.: Contextual objectivity: a realistic interpretation of quantum mechanics. Eur. J. Phys. 23, 331 (2002)CrossRefGoogle Scholar
  9. 9.
    Grangier, P.: Contextual objectivity and the quantum formalism. Int. J. Quantum Inf. 3(1), 17–22 (2005)CrossRefMATHGoogle Scholar
  10. 10.
    Mermin, D.: Quantum mechanics: fixing the shifty split. Phys. Today 65(7), 8 (2012)CrossRefGoogle Scholar
  11. 11.
    Pusey, M.F., Barrett, J., Rudolph, T.: On the reality of the quantum state. Nat. Phys. 8, 475–478 (2012)CrossRefGoogle Scholar
  12. 12.
    Laloë, F.: Do We Really Understand Quantum Mechanics. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
  13. 13.
    Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing vol. 175, 8 (1984)Google Scholar
  14. 14.
    Von Neumann, J.: Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932). Mathematical Foundations of Quantum Mechanics, Princeton University Press (1955)MATHGoogle Scholar
  15. 15.
    Auffèves, A., Grangier P.: A simple derivation of Born’s rule with and without Gleason’s theorem, arXiv:1505.01369
  16. 16.
    Gleason, A.M.: Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6(6), 885–893 (1957)MathSciNetMATHGoogle Scholar
  17. 17.
    Cohen-Tannoudji, C., Diu, B., Laloe, F.: Mécanique Quantique. Hermann, Paris (1977)Google Scholar
  18. 18.
    Grangier, P., Levenson, J.A., Poizat, J.P.: Quantum non-demolition measurements in optics. Nature 396, 537–542 (1998). and references thereinCrossRefADSGoogle Scholar
  19. 19.
    Peres, A., Zurek, W.H.: Is quantum theory universally valid? Am. J. Phys. 50, 807 (1982)CrossRefADSGoogle Scholar
  20. 20.
    Bohm, D., Bub, J.: A proposed solution to the measurement problem in quantum mechanics by a hidden variable theory. Rev. Mod. Phys. 38, 3 (1966)MathSciNetMATHGoogle Scholar
  21. 21.
    Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 2 (1986)CrossRefMathSciNetMATHGoogle Scholar
  22. 22.
    Rovelli, C.: Relational quantum mechanics. Int. J. Theor. Phys. 35, 1637 (1996)CrossRefMathSciNetMATHGoogle Scholar
  23. 23.
    Griffiths, R.B.: Consistent Quantum Mechanics. Cambridge University Press, Cambridge (2002)MATHGoogle Scholar
  24. 24.
    Schlosshauer, M.A.: Decoherence, the measurement problem, and interpretations of quantum mechanics. Rev. Mod. Phys. 76, 1267–1305 (2004)CrossRefADSGoogle Scholar
  25. 25.
    Rèdei, M., Summers, S.J.: Quantum probability theory. Stud. History Philos. Modern Phys. 38, 390–417 (2007)CrossRefMathSciNetMATHGoogle Scholar
  26. 26.
    Brukner, C., Zeilinger, A.: Information invariance and quantum probabilities. Found. Phys. 39, 677–689 (2009)CrossRefADSMathSciNetMATHGoogle Scholar
  27. 27.
    Hardy L.: Reformulating and Reconstructing Quantum Theory. arXiv:1104.2066v1
  28. 28.
    Zurek, W.H.: Quantum darwinism, classical reality, and the randomness of quantum jumps. Phys. Today 67, 44–50 (2014)CrossRefGoogle Scholar
  29. 29.
    Schlosshauer, M., Fine, A.: On Zurek’s derivation of the Born rule. Found. Phys. 35(2), 197–213 (2005)CrossRefADSMathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Institut NéelGrenoble Cedex 9France
  2. 2.Institut d’OptiquePalaiseauFrance

Personalised recommendations