Advertisement

Foundations of Physics

, Volume 45, Issue 10, pp 1137–1152 | Cite as

Free Quantum Field Theory from Quantum Cellular Automata

Derivation of Weyl, Dirac and Maxwell Quantum Cellular Automata
  • Alessandro Bisio
  • Giacomo Mauro D’ArianoEmail author
  • Paolo Perinotti
  • Alessandro Tosini
Article

Abstract

After leading to a new axiomatic derivation of quantum theory (see D’Ariano et al. in Found Phys, 2015), the new informational paradigm is entering the domain of quantum field theory, suggesting a quantum automata framework that can be regarded as an extension of quantum field theory to including an hypothetical Planck scale, and with the usual quantum field theory recovered in the relativistic limit of small wave-vectors. Being derived from simple principles (linearity, unitarity, locality, homogeneity, isotropy, and minimality of dimension), the automata theory is quantum ab-initio, and does not assume Lorentz covariance and mechanical notions. Being discrete it can describe localized states and measurements (unmanageable by quantum field theory), solving all the issues plaguing field theory originated from the continuum. These features make the theory an ideal framework for quantum gravity, with relativistic covariance and space-time emergent solely from the interactions, and not assumed a priori. The paper presents a synthetic derivation of the automata theory, showing how the principles lead to a description in terms of a quantum automaton over a Cayley graph of a group. Restricting to Abelian groups we show how the automata recover the Weyl, Dirac and Maxwell dynamics in the relativistic limit. We conclude with some new routes about the more general scenario of non-Abelian Cayley graphs. The phenomenology arising from the automata theory in the ultra-relativistic domain and the analysis of corresponding distorted Lorentz covariance is reviewed in Bisio et al. (Found Phys 2015, in this same issue).

Keywords

Informational principles Quantum field theory Quantum cellular automata Planck scale 

Notes

Acknowledgments

This work has been supported in part by the Templeton Foundation under the project ID# 43796 A Quantum-Digital Universe.

References

  1. 1.
    Acevedo, O.L., Roland, J., Cerf, N.J.: Exploring scalar quantum walks on cayley graphs. Quantum Info. Comput. 8(1), 68–81 (2008)zbMATHGoogle Scholar
  2. 2.
    Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)CrossRefADSGoogle Scholar
  3. 3.
    Ambainis, A., Bach, E., Nayak, A., Vishwanath, A., Watrous, J.: One-dimensional quantum walks. In: Proceedings of the thirty-third annual ACM symposium on theory of computing, pp. 37–49. ACM (2001)Google Scholar
  4. 4.
    Ariano, G.M.D.: On the missing axiom of quantum mechanicss. AIP Conf. Proc. 810(1), 114–130 (2006). doi: 10.1063/1.2158715 CrossRefADSGoogle Scholar
  5. 5.
    Arrighi, P., Nesme, V., Forets, M.: The Dirac equation as a quantum walk: higher dimensions, observational convergence. J. Phys. A 47(46), 465302 (2014)MathSciNetCrossRefADSGoogle Scholar
  6. 6.
    Bekenstein, J.D.: Black holes and entropy. Phys. Rev. D 7(8), 2333 (1973)MathSciNetCrossRefADSGoogle Scholar
  7. 7.
    Bialynicki-Birula, I.: Weyl, Dirac, and Maxwell equations on a lattice as unitary cellular automata. Phys. Rev. D 49(12), 6920 (1994)MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Bibeau-Delisle, A., Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Doubly-special relativity from quantum cellular automata. arXiv:1310.6760 (2013)
  9. 9.
    Bisio, A., D’Ariano, G.M., Perinotti, P.: Quantum cellular automaton theory of light. arXiv:1407.6928 (2014)
  10. 10.
    Bisio, A., D’Ariano, G.M., Perinotti, P.: Lorentz symmetry for 3d quantum cellular automata. arXiv preprint arXiv:1503.01017 (2015)
  11. 11.
    Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Weyl, Dirac and Maxwell quantum cellular automata: analitical solutions and phenomenological predictions of the quantum cellular automata theory of free fields. Found. Phys. (2015). doi: 10.1007/s10701-015-9927-0
  12. 12.
    Bisio, A., D’Ariano, G.M., Tosini, A.: Dirac quantum cellular automaton in one dimension: \(Zitterbewegung\) and scattering from potential. Phys. Rev. A 88, 032301 (2013)CrossRefADSGoogle Scholar
  13. 13.
    Bisio, A., D’Ariano, G.M., Tosini, A.: Quantum field as a quantum cellular automaton: the Dirac free evolution in one dimension. Ann. Phys. 354, 244–264 (2015)MathSciNetCrossRefADSGoogle Scholar
  14. 14.
    Bousso, R.: Light sheets and Bekenstein’s entropy bound. Phys. Rev. Lett. 90, 121302 (2003)MathSciNetCrossRefADSGoogle Scholar
  15. 15.
    Bravyi, S.B., Kitaev, A.Y.: Fermionic quantum computation. Ann. Phys. 298(1), 210–226 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  16. 16.
    Chiribella, G., D’Ariano, G., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311 (2011)CrossRefADSGoogle Scholar
  17. 17.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 81, 062348 (2010)CrossRefADSGoogle Scholar
  18. 18.
    Dakic, B., Brukner, C.: Quantum theory and beyond: is entanglement special? In: Halvorson, H. (ed.) Deep Beauty: Understanding the Quantum World through Mathematical Innovation, pp. 365–392. Cambridge University Press, Cambridge (2011)CrossRefGoogle Scholar
  19. 19.
    D’Ariano, G.: On the “principle of the quantumness”, the quantumness of relativity, and the computational grand-unification. In: CP1232 Quantum Theory: Reconsideration of Foundations 5, p. 3 (2010)Google Scholar
  20. 20.
    D’Ariano, G.: Physics as information processing. Advances in quantum theory. AIP Conf. Proc. 1327, 7 (2011)CrossRefADSGoogle Scholar
  21. 21.
    D’Ariano, G.: The Dirac quantum automaton: a preview. arXiv:1211.2479 (2012)
  22. 22.
    D’Ariano, G.M.: A computational grand-unified theory. http://pirsa.org/10020037 (2010)
  23. 23.
    D’Ariano, G.M.: Probabilistic theories: what is special about quantum mechanics? In: Philosophy of Quantum Information and Entanglement p. 85 (2010)Google Scholar
  24. 24.
    D’Ariano, G.M.: A quantum-digital universe. Adv. Sci. Lett. 17, 130 (2012)CrossRefGoogle Scholar
  25. 25.
    D’Ariano, G.M.: A quantum digital universe. Il Nuovo Saggiatore 28, 13 (2012)Google Scholar
  26. 26.
    D’Ariano, G.M.: The quantum field as a quantum computer. Phys. Lett. A 376(5), 697–702 (2012)zbMATHMathSciNetCrossRefADSGoogle Scholar
  27. 27.
    D’Ariano, G.M., Manessi, F., Perinotti, P., Tosini, A.: Fermionic computation is non-local tomographic and violates monogamy of entanglement. EPL (Europhys. Lett.) 107(2), 20009 (2014)CrossRefGoogle Scholar
  28. 28.
    D’Ariano, G.M., Manessi, F., Perinotti, P., Tosini, A.: The Feynman problem and fermionic entanglement: fermionic theory versus qubit theory. Int. J. Mod. Phys. A 29(17), 1430025 (2014)MathSciNetCrossRefGoogle Scholar
  29. 29.
    D’Ariano, G.M., Perinotti, P.: Derivation of the Dirac equation from principles of information processing. Phys. Rev. A 90, 90062 (2014)Google Scholar
  30. 30.
    D’Ariano, G.M., Perinotti, P.: The dirac quantum automaton: a short review. Phys. Scr. 163, 014014 (2014)CrossRefGoogle Scholar
  31. 31.
    D’Ariano, G.M., Perinotti, P.: Quantum theory is an information theory: the operational framework and the axioms. Found. Phys. (2015). doi: 10.1007/s10701-015-9935-0
  32. 32.
    Erba, M.: Non-abelian quantum walks and renormalization. Master Thesis, (2014)Google Scholar
  33. 33.
    Farrelly, T.C., Short, A.J.: Discrete spacetime and relativistic quantum particles. arXiv:1312.2852 (2013)
  34. 34.
    Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21(6), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Fuchs, C.A.: Quantum mechanics as quantum information (and only a little more). quant-ph/0205039 (2002)
  36. 36.
    Gromov, M.: Infinite groups as geometric objects. Proc. Int. Congr. Math. 1, 2 (1984)Google Scholar
  37. 37.
    Grossing, G., Zeilinger, A.: Quantum cellular automata. Complex Syst. 2(2), 197–208 (1988)MathSciNetGoogle Scholar
  38. 38.
    Hardy, L.: Quantum theory from five reasonable axioms. quant-ph/0101012 (2001)
  39. 39.
    Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)MathSciNetCrossRefADSGoogle Scholar
  40. 40.
    de La Harpe, P.: Topics in geometric group theory. University of Chicago Press, Chicago (2000)zbMATHGoogle Scholar
  41. 41.
    Masanes, L., Müller, M.P.: A derivation of quantum theory from physical requirements. New J. Phys. 13(6), 063001 (2011)CrossRefADSGoogle Scholar
  42. 42.
    Meyer, D.: From quantum cellular automata to quantum lattice gases. J. Stat. Phys. 85(5), 551–574 (1996)zbMATHCrossRefADSGoogle Scholar
  43. 43.
    Wheeler, J.A.: The computer and the universe. Int. J. Theor. Phys. 21(6–7), 557–572 (1982)CrossRefGoogle Scholar
  44. 44.
    Yepez, J.: Relativistic path integral as a lattice-based quantum algorithm. Quantum Inf. Process. 4(6), 471–509 (2006)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Alessandro Bisio
    • 1
  • Giacomo Mauro D’Ariano
    • 1
    Email author
  • Paolo Perinotti
    • 1
  • Alessandro Tosini
    • 1
  1. 1.QUIT Group, Dipartimento di FisicaUniversita’ di Pavia and INFN sezione di PaviaPaviaItaly

Personalised recommendations