Foundations of Physics

, Volume 45, Issue 10, pp 1222–1268 | Cite as

A Matter of Principle: The Principles of Quantum Theory, Dirac’s Equation, and Quantum Information

  • Arkady PlotnitskyEmail author


This article is concerned with the role of fundamental principles in theoretical physics, especially quantum theory. The fundamental principles of relativity will be addressed as well, in view of their role in quantum electrodynamics and quantum field theory, specifically Dirac’s work, which, in particular Dirac’s derivation of his relativistic equation of the electron from the principles of relativity and quantum theory, is the main focus of this article. I shall also consider Heisenberg’s earlier work leading him to the discovery of quantum mechanics, which inspired Dirac’s work. I argue that Heisenberg’s and Dirac’s work was guided by their adherence to and their confidence in the fundamental principles of quantum theory. The final section of the article discusses the recent work by D’Ariano and coworkers on the principles of quantum information theory, which extend quantum theory and its principles in a new direction. This extension enabled them to offer a new derivation of Dirac’s equations from these principles alone, without using the principles of relativity.


Constructive theories Dirac’s equation Principle theories Quantum field theory Quantum information theory Quantum mechanics Relativity 



I am grateful to G. Mauro D’Ariano for sharing, in many invaluable discussions, his thinking and his knowledge of quantum theory. I would also like to thank Lucien Hardy, Gregg Jaeger, Andrei Khrennikov, and Paolo Perinotti for productive exchanges that helped my work on this article. I would like to add that the authors mentioned here, as well as the present author, have each published a series of papers on quantum foundations in the Proceedings of Växjö conferences on quantum foundations during the last decade. I gratefully acknowledge the role of these conferences in my work.


  1. 1.
    Dirac, P.A.M.: The quantum theory of the electron. Proc. R. Soc. Lond. A 177, 610–624 (1928)CrossRefADSGoogle Scholar
  2. 2.
    Heisenberg, W.: The Physical Principles of the Quantum Theory (trans. Eckhart, K., Hoyt, F.C.). Dover, New York, reprint 1949 (1930)Google Scholar
  3. 3.
    Dirac, P.A.M.: The Principles of Quantum Mechanics, 4th edn. Clarendon, Oxford, reprint 1995 (1930)Google Scholar
  4. 4.
    Einstein, A.: What is the theory of relativity. The London Times, 28 November, 1919; in Einstein, A.: Ideas and Opinions. Bonanza Books, New York, 1954 (1919)Google Scholar
  5. 5.
    Zeilinger, A.: A foundational principle for quantum mechanics. Found. Phys. 29(4), 63 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Bub, J.: Quantum mechanics as a principle theory. Stud. Hist. Philos. Mod. Phys. 31(1), 75–94 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    Plotnitsky, A.: Epistemology and Probability: Bohr, Heisenberg, Schrödinger and the Nature of Quantum-Theoretical Thinking. Springer, New York (2009)Google Scholar
  8. 8.
    Ungar, R.M., Smolin, L.: The Singular Universe and the Reality of Time: A Proposal in Natural Philosophy. Cambridge University Press, Cambridge (2014)CrossRefGoogle Scholar
  9. 9.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Informational derivation of quantum theory. Phys. Rev. A 84, 012311-1–012311-39 (2011)Google Scholar
  10. 10.
    Chiribella, G., D’Ariano, G.M., Perinotti, P.: Probabilistic theories with purification. Phys. Rev. A 84, 062348-1–062348-40 (2010)Google Scholar
  11. 11.
    D’Ariano, G.M., Perinotti, P.: Derivation of the Dirac equation from principles of information processing. Phys. Rev. A 90, 062106 (2014)CrossRefADSGoogle Scholar
  12. 12.
    Pauli, W.: Writings on Physics and Philosophy. Springer, Berlin (1994)zbMATHCrossRefGoogle Scholar
  13. 13.
    Einstein, A.: Theorie der Lichterzeugung und Lichtabsorption. Ann. Phys. 20, 199–206 (1906)zbMATHCrossRefGoogle Scholar
  14. 14.
    Einstein, A.: Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys. 17, 132–148 (1905)zbMATHCrossRefGoogle Scholar
  15. 15.
    Einstein, A.: Autobiographical Notes (trans. Schilpp, P.A.). Open Court, La Salle, IL (1991)Google Scholar
  16. 16.
    Van Dongen, J.: Einstein’s Unification. Cambridge University Press, Cambridge (2010)zbMATHCrossRefGoogle Scholar
  17. 17.
    Plotnitsky, A., Khrennikov, A.: Reality without realism: on the ontological and epistemological architecture of quantum mechanics. arXiv:1502.06310 [physics.hist-ph] (2015)
  18. 18.
    Einstein, A.: Zur Elektrodynamik bewegter Körper. Ann. Phys. 17(10), 891–921 (1905)zbMATHCrossRefGoogle Scholar
  19. 19.
    Butterfield, J., Isham, C.J.: Spacetime and the philosophical challenge of quantum gravity. In: Callender, C., Huggett, N. (eds.) Physics Meets Philosophy at the Planck Scale: Contemporary Theories of Quantum Gravity, pp. 33–89. Cambridge University Press, Cambridge (2001)CrossRefGoogle Scholar
  20. 20.
    Kant, I.: Critique of Pure Reason (trans. Guyer, P., Wood, A.W.). Cambridge University Press, Cambridge (1997)Google Scholar
  21. 21.
    Dowe, P.: Physical Causation. Cambridge University Press, Cambridge (2007)Google Scholar
  22. 22.
    D’Ariano, G.M., Manessi, F., Perinotti, P.: Determinism without Causality. Phys. Scripta T 163, 014013-1–014013-8 (2014)Google Scholar
  23. 23.
    Plotnitsky, A.: ‘Dark materials to create more worlds’: on causality in classical physics, quantum physics, and nanophysics. J. Comput. Theor. Nanosci. 8(6), 983–997 (2011)CrossRefGoogle Scholar
  24. 24.
    Bohr, N.: The Philosophical Writings of Niels Bohr, vol. 3. Ox Bow Press, Woodbridge, CT (1987)Google Scholar
  25. 25.
    Heisenberg, W.: Quantum-theoretical re-interpretation of kinematical and mechanical relations. In: Van der Waerden, B.L. (ed.) Sources of Quantum Mechanics, pp. 261–277. Dover, New York, Reprint 1968 (1925)Google Scholar
  26. 26.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? In: Wheeler, J.A., Zurek, W.H. (ed.) Quantum Theory and Measurement, pp. 138–141. Princeton University Press, Princeton, Reprint 1983 (1935)Google Scholar
  27. 27.
    Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)zbMATHCrossRefADSGoogle Scholar
  28. 28.
    Plotnitsky, A.: Niels Bohr and Complementarity: An Introduction. Springer, New York (2012)CrossRefGoogle Scholar
  29. 29.
    Plotnitsky, A.: What is complementarity?: Niels Bohr and the architecture of quantum theory. Phys. Scripta T 163 014002-1–014002-20 (2014)Google Scholar
  30. 30.
    Schrödinger, E.: The present situation in quantum mechanics. In: Wheeler, J.A., Zurek, W.H. (ed.) Quantum Theory and Measurement, pp. 152–167. Princeton University Press, Princeton, NJ, Reprint 1983 (1935)Google Scholar
  31. 31.
    Von Neumann, J.: Mathematical Foundations of Quantum Mechanics (trans. Beyer, R.T.). Princeton University Press, Princeton, NJ, Reprint 1983 (1932)Google Scholar
  32. 32.
    Dirac, P.A.M.: The fundamental equations of quantum mechanics. In: van der Warden, B.L. (ed.) Sources of Quantum Mechanics, pp. 307–320. Dover, New York, Reprint 1968 (1925)Google Scholar
  33. 33.
    Dirac, P.A.M.: The physical interpretation of the quantum dynamics. Proc. R Soc. Lond. A 113, 621 (1927)zbMATHCrossRefADSGoogle Scholar
  34. 34.
    Dirac, P.A.M.: The quantum theory of emission and absorption of radiation. Proc. R Soc. Lond. A 114, 243 (1927)zbMATHCrossRefADSGoogle Scholar
  35. 35.
    Dirac, P.A.M.: Interview with T. Kuhn, April 1 1962. Niels Bohr Archive, Copenhagen and American Institute of Physics, College Park, MD (1962)Google Scholar
  36. 36.
    Pauli, W.: Zur Quantenmechanik des magnetischen Elektrons. Z. Phys. 43, 601 (1927)zbMATHCrossRefADSGoogle Scholar
  37. 37.
    Wigner, E.P.: On unitary representations of the inhomoneneous Lorentz group. Ann. Math. 40, 149 (1939)MathSciNetCrossRefADSGoogle Scholar
  38. 38.
    Kragh, H.: Dirac: A Scientific Biography. Cambridge University Press, Cambridge (1990)Google Scholar
  39. 39.
    Kuhlman, M.: Quantum field theory. In: Zalta, E. (ed.) Stanford Encyclopedia of Philosophy. Springer, New York (2014)Google Scholar
  40. 40.
    Weyl, H.: The Theory of Groups and Quantum Mechanics (trans. Robertson, H.P.). Methuen, London (1931)Google Scholar
  41. 41.
    French, S.: Identity and individuality in quantum theory. In: Zalta, E. (ed.) The Stanford Encyclopedia of Philosophy. Springer, New York (2014)Google Scholar
  42. 42.
    Jaeger, G.: Quantum Objects: Non-Local Correlation. Causality and Objective Indefiniteness in the Quantum World. Springer, New York (2014)CrossRefGoogle Scholar
  43. 43.
    Heisenberg, W.: Encounters with Einstein, and Other Essays on People, Places, and Particles. Princeton University Press, Princeton, NJ (1989)Google Scholar
  44. 44.
    Weinberg, S.: What is an elementary particle? Beam Line: Period. Part. Phys. 27, 17–21 (1997)Google Scholar
  45. 45.
    Cao, T.Y. (ed.): Conceptual Foundations of Quantum Field Theories. Cambridge University Press, Cambridge (1999)Google Scholar
  46. 46.
    Teller, P.: An Interpretive Introduction to Quantum Field Theory. Princeton University Press, Princeton, NJ (1995)zbMATHGoogle Scholar
  47. 47.
    Schweber, S.: QED and the Men Who Made It: Dyson, Feynman, Schwinger, and Tomonaga. Princeton University Press, Princeton, NJ (1994)zbMATHGoogle Scholar
  48. 48.
    Carroll, S.: The Particle at the End of the Universe: How the Hunt for the Higgs Boson Leads Us to the Edge of a New World. Dutton/Penguin USA, New York (2012)Google Scholar
  49. 49.
    Fuchs, C., Mermin, N.D., Schack, R.: An Introduction to QBism with an Application to the Locality of Quantum Mechanics. arXiv:1131.5253 [quant-ph] Nov (2013)
  50. 50.
    Hardy, L.: Quantum mechanics from five reasonable axioms. arXiv:quant-ph/0101012v4 (2001)
  51. 51.
    Wheeler, J.A.: Information, physics, quantum: the search for links. In: Zurek, W.H. (ed.) Complexity, Entropy, and the Physics of Information. Addison-Wesley, Redwood City, CA (1990)Google Scholar
  52. 52.
    Coecke, B.: Quantum picturalism. Contemp. Phys. 51, 59 (2010)CrossRefADSGoogle Scholar
  53. 53.
    Amelino-Camelia, G.: Relativity in spacetimes with short-distance structure governed by an observer-independent (Plankian) length scale. Int. J. Mod. Phys. D 11, 35 (2002)zbMATHMathSciNetCrossRefADSGoogle Scholar
  54. 54.
    Amelino-Camelia, G., Piran, T.: Planck-scale deformation of Lorentz symmetry as a solution to the ultrahigh energy cosmic ray and the TeV-photon paradoxes. Phys. Rev. D 64, 036005 (2001)CrossRefADSGoogle Scholar
  55. 55.
    Magueijo, J., Smolin, L.: Lorentz invariance with an invariant energy scale. Phys. Rev. Lett. 88(19), 190403 (2002)CrossRefADSGoogle Scholar
  56. 56.
    Magueijo, J., Smolin, L.: Generalized Lorenz invariance with an Invariant Energy Scale. Phys. Rev. D 67, 044017 (2003)MathSciNetCrossRefADSGoogle Scholar
  57. 57.
    Zwiebach, B.: A First Course in String Theory. Cambridge University Press, Cambridge (2004)zbMATHCrossRefGoogle Scholar
  58. 58.
    Becker, K., Becker, M., Schwarz, J.H., Ramond, R.: String theory and M-theory. Phys. Today 61, 55 (2008)CrossRefGoogle Scholar
  59. 59.
    Jacobson, T.: Thermodynamics of spacetime: The Einstein equation of state. Phys. Rev. Lett. 75, 1260 (1995)zbMATHMathSciNetCrossRefADSGoogle Scholar
  60. 60.
    Verlinde, E.: On the origins of gravity and the laws of Newton. J. High Energy Phys. 29, 1 (2011)Google Scholar
  61. 61.
    Moyer, M.: Is space digital? Sci. Am. 306, 30–37 (2012)CrossRefADSGoogle Scholar
  62. 62.
    Hogan, C.J.: Interferometers as probes of Planckian quantum geometry. Phys. Rev. D 85, 064007 (2012)CrossRefADSGoogle Scholar
  63. 63.
    Pikovski, I., Vanner, M., Aspelmeyer, M., Kim, M., Brukner, C.: Probing Planck-scale physics with quantum optics. Nat. Phys. 331, 393 (2012)CrossRefGoogle Scholar
  64. 64.
    Amelino-Camelia, G., Laemmerzahl, C., Mercati, F., Tino, G.: Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms. Phys. Rev. Lett. 103, 171302 (2009)CrossRefADSGoogle Scholar
  65. 65.
    Bibeau-Delisle, A., Bisio, A., D’Ariano, G.M., Perinotti, P., Tosini, A.: Doubly-special relativity from quantum cellular automata. Unpublished (2013)Google Scholar
  66. 66.
    ‘t Hooft, G.: The cellular automaton interpretation of quantum mechanics, a view on the quantum nature of our universe, compulsory or impossible? ITP-UU-14/15, SPIN-14/13 (2014)Google Scholar
  67. 67.
    Khrennikov, A.: Beyond Quantum. Pan Stanford Publication, Singapore (2014)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Purdue UniversityWest LafayetteUSA

Personalised recommendations