Skip to main content
Log in

Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The interpretation of the concept of reduced state is a subtle issue that has relevant consequences when the task is the interpretation of quantum mechanics itself. The aim of this paper is to argue that reduced states are not the quantum states of subsystems in the same sense as quantum states are states of the whole composite system. After clearly stating the problem, our argument is developed in three stages. First, we consider the phenomenon of environment-induced decoherence as an example of the case in which the subsystems interact with each other; we show that decoherence does not solve the measurement problem precisely because the reduced state of the measuring apparatus is not its quantum state. Second, the non-interacting case is illustrated in the context of no-collapse interpretations, in which we show that certain well-known experimental results cannot be accounted for due to the fact that the reduced states of the measured system and the measuring apparatus are conceived as their quantum states. Finally, we prove that reduced states are a kind of coarse-grained states, and for this reason they cancel the correlations of the subsystem with other subsystems with which it interacts or is entangled.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Here we will not discuss the question of the supposed priority of pure states over mixed states: following certain presentations of the theory (e.g., [10]), we will take the generic stance of considering state operators as representing quantum states, and pure states as a particular case.

  2. Wayne Myrvold stressed this point in a comment to our talk at the 14thCongress of Logic, Methodology and Philosophy of Science (Nancy, July 19–26, 2011). We will come back to this point in the next section.

  3. We thank one of the anonymous referees for stressing this point.

  4. The quaternionic formulation of quantum mechanics is a formalism based on quaternion fields instead of complex fields (see [1]).

  5. We are grateful to one of the referees for a comment that suggested this critical remark.

  6. This was the reaction of Rodolfo Gambini when we explained him the basics of modal interpretations. We are grateful to him for the interesting discussion that followed.

  7. We are grateful to one of the referees for giving us the opportunity of emphasizing this point.

  8. Of course, this does not mean that the non-unitary evolution of the open subsystems of a quantum system is due to instability. The analogy emphasized here is based on the fact that both in unstable classical systems and in open quantum systems non-unitarily is obtained as the result of a coarse-graining on a underlying unitary evolution.

References

  1. Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  2. Adler, S.: Why decoherence has not solved the measurement problem: a response to P. W. Anderson. Stud. Hist. Philos. Mod. Phys. 34, 135–142 (2003)

    Article  Google Scholar 

  3. Anastopoulos, C.: Frequently asked questions about decoherence. Int. J. Theor. Phys. 41, 1573–1590 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Anderson, P.W.: Science: a ‘dappled world’ or a ‘seamless web’? Stud. Hist. Philos. Mod. Phys. 34, 487–494 (2001)

    Article  Google Scholar 

  5. Ardenghi, J.S., Castagnino, M., Lombardi, O.: Quantum mechanics: modal interpretation and Galilean transformations. Found. Phys. 39, 1023–1045 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Ardenghi, J.S., Lombardi, O.: The modal-Hamiltonian interpretation of quantum mechanics as a kind of “atomic” interpretation. Phys. Res. Int. 2011, 379604 (2011)

    Article  Google Scholar 

  7. Ardenghi, J.S., Lombardi, O., Narvaja, M.: Modal interpretations and consecutive measurements. In: Karakostas, V., Dieks, D. (eds.) EPSA 2011: Perspectives and Foundational Problems in Philosophy of Science, pp. 207–217. Springer, Dordrecht (2012)

    Google Scholar 

  8. Auletta, G.: Foundations and Interpretation of Quantum Mechanics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  9. Bacciagaluppi, G.: The role of decoherence in quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Fall 2008 Edition). http://plato.stanford.edu/archives/fall2008/entries/qm-decoherence (2008). Accessed 2013

  10. Ballentine, L.: Quantum Mechanics: A Modern Development. World Scientific, Singapore (1998)

    Book  MATH  Google Scholar 

  11. Berkovitz, J., Frigg, R., Kronz, F.: The ergodic hierarchy, randomness and Hamiltonian chaos. Stud. Hist. Philos. Mod. Phys. 37, 661–691 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bricmont, J.: Science of chaos or chaos in science? Phys. Mag. 17, 159–208 (1995)

    Google Scholar 

  13. Bub, J.: Quantum mechanics without the projection postulate. Found. Phys. 22, 737–754 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  14. Bub, J.: Interpreting the Quantum World. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  15. Bub, J., Clifton, R.: A uniqueness theorem for ‘no collapse’ interpretations of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 27, 181–219 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  16. Callender, C.: Reducing thermodynamics to statistical mechanics: the case of entropy. J. Philos. 96, 348–373 (1999)

    Article  MathSciNet  Google Scholar 

  17. Cartwright, N.: How the Laws of Physics Lie. Clarendon Press, Oxford (1983)

    Book  Google Scholar 

  18. Castagnino, M., Fortin, S.: Formal features of a general theoretical framework for decoherence in open and closed systems. Int. J. Theor. Phys. 52, 1379–1398 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  19. Castagnino, M., Fortin, S., Lombardi, O.: Suppression of decoherence in a generalization of the spin-bath model. J. Phys. A 43, 065304 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  20. Castagnino, M., Fortin, S., Lombardi, O.: The effect of random coupling coefficients on decoherence. Mod. Phys. Lett. A 25, 611–617 (2010)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  21. Castagnino, M., Laura, R., Lombardi, O.: A general conceptual framework for decoherence in closed and open systems. Philos. Sci. 74, 968–980 (2007)

    Article  MathSciNet  Google Scholar 

  22. Cohen-Tannoudji, C., Diu, B., Lalöe, F.: Quantum Mechanics. Wiley, New York (1977)

    Google Scholar 

  23. d’Espagnat, B.: Conceptual Foundations of Quantum Mechanics. Benjamin, Reading (1976)

    Google Scholar 

  24. d’Espagnat, B.: Veiled Reality. An Analysis of Present-Day Quantum Mechanical Concepts. Addison-Wesley, Reading (1995)

    Google Scholar 

  25. Dieks, D.: The formalism of quantum theory: an objective description of reality? Annalen der Physik 7, 174–190 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dieks, D.: Quantum mechanics without the projection postulate and its realistic interpretation. Found. Phys. 38, 1397–1423 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  27. Dieks, D.: Preferred factorizations and consistent property attribution. In: Healey, R., Hellman, G. (eds.) Quantum Measurement: Beyond Paradox, pp. 144–160. University of Minnesota Press, Minneapolis (1998)

    Google Scholar 

  28. Dieks, D.: Objectification, measurement and classical limit according to the modal interpretation of quantum mechanics. In: Busch, P., Lahti, P., Mittelstaedt, P. (eds.) Proceedings of the Symposium on the Foundations of Modern Physics, pp. 160–167. World Scientific, Singapore (1994)

  29. Dieks, D.: Modal interpretation of quantum mechanics, measurements, and macroscopic behaviour. Phys. Rev. A 49, 2290–2300 (1994)

    Article  ADS  Google Scholar 

  30. Dieks, D.: Probability in modal interpretations of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 19, 292–310 (2007)

    Article  MathSciNet  Google Scholar 

  31. Dieks, D., Vermaas, P.E.: The Modal Interpretation of Quantum Mechanics. Kluwer Academic Publishers, Dordrecht (1998)

    Book  MATH  Google Scholar 

  32. Driebe, D.J.: Letters (answer to Lebowitz, 1993). Phys. Today 47, 14–15 (1994)

    Google Scholar 

  33. Earman, J., Rédei, M.: Why ergodic theory does not explain the success of equilibrium statistical mechanics. Br. J. Philos. Sci. 47, 63–78 (1996)

    Article  MATH  Google Scholar 

  34. Frigg, R.: A field guide to recent work on the foundations of thermodynamics and statistical mechanics. In: Rickles, D. (ed.) The Ashgate Companion to the New Philosophy of Physics, pp. 99–196. Ashgate, London (2007)

    Google Scholar 

  35. Gell-Mann, M., Hartle, J.B.: Classical equations for quantum systems. Phys. Rev. D 47, 3345–3382 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  36. Harshman, N.L., Wickramasekara, S.: Galilean and dynamical invariance of entanglement in particle scattering. Phys. Rev. Lett. 98, 080406 (2007)

    Article  ADS  Google Scholar 

  37. Harshman, N.L., Wickramasekara, S.: Tensor product structures, entanglement, and particle scattering. Open Syst. Inf. Dyn. 14, 341–351 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  38. Healey, R.: Dissipating the quantum measurement problem. Topoi 14, 55–65 (1995)

    Article  MathSciNet  Google Scholar 

  39. Healey, R.: Physical composition. Stud. Hist. Philos. Mod. Phys. 44, 48–62 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Hughes, R.I.G.: The Structure and Interpretation of Quantum Mechanics. Harvard University Press, Cambridge (1989)

    Google Scholar 

  41. Joos, E.: Elements of environmental decoherence. In: Blanchard, P., Giulini, D., Joos, E., Kiefer, C., Stamatescu, I.-O. (eds.) Decoherence: Theoretical, Experimental, and Conceptual Problems. Lecture Notes in Physics, vol. 538, pp. 1–17. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  42. Kochen, S.: A new interpretation of quantum mechanics. In: Mittelstaedt, P., Lahti, P. (eds.) Symposium on the Foundations of Modern Physics 1985, pp. 151–169. World Scientific, Singapore (1985)

    Google Scholar 

  43. Koopman, B.O.: Hamiltonian systems and transformations in Hilbert space. Proc. Natl. Acad. Sci. 18, 315–318 (1931)

    Article  ADS  Google Scholar 

  44. Laura, R., Vanni, L.: Conditional probabilities and collapse in quantum measurements. Int. J. Theor. Phys. 47, 2382–2392 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  45. Lebowitz, J.L.: Boltzmann’s entropy and time’s arrow. Phys. Today 46, 32–38 (1993)

    Article  Google Scholar 

  46. Lebowitz, J.L.: Lebowitz replies. Phys. Today 47, 115–116 (1994)

    MathSciNet  Google Scholar 

  47. Lebowitz, J.L.: Statistical mechanics: a selective review of two central issues. Rev. Mod. Phys. 71, S346–S357 (1994)

    Article  Google Scholar 

  48. Leggett, A.J.: Reflections on the quantum measurement paradox. In: Hiley, B.J., Peat, F.D. (eds.) Quantum Implications, pp. 85–104. Routledge and Kegan Paul, London (1987)

    Google Scholar 

  49. Lombardi, O.: El problema de la ergodicidad en mecánica estadística, Crítica. Revista Hispanoamericana de Filosofía 35, 3–41 (2003)

    Google Scholar 

  50. Lombardi, O., Castagnino, M.: A modal-Hamiltonian interpretation of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 39, 380–443 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  51. Lombardi, O., Castagnino, M., Ardenghi, J.S.: The modal-Hamiltonian interpretation and the Galilean covariance of quantum mechanics. Stud. Hist. Philos. Mod. Phys. 41, 93–103 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lombardi, O., Dieks, D.: Modal interpretations of quantum mechanics. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy (Winter 2012 Edition). http://plato.stanford.edu/archives/win2012/entries/qm-modal/ (2012). Accessed 2013

  53. Lombardi, O., Fortin, S., Castagnino, M.: The problem of identifying the system and the environment in the phenomenon of decoherence. In: de Regt, H., Okasha, S., Hartmann, S. (eds.) EPSA Philosophy of Science: Amsterdam 2009, pp. 161–174. Springer, Dordrecht (2012).

  54. Mackey, M.C.: The dynamic origin of increasing entropy. Rev. Mod. Phys. 61, 981–1015 (1989)

    Article  ADS  Google Scholar 

  55. Masillo, F., Scolarici, G., Sozzo, S.: Proper versus improper mixtures: towards a quaternionic quantum mechanics. Theor. Math. Phys. 160, 1006–1013 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  56. Messiah, A.: Quantum Mechanics, vol. 1. North-Holland, Amsterdam (1961)

    Google Scholar 

  57. Misra, B., Prigogine, I., Courbage, M.: From deterministic dynamics to probabilistic descriptions. Physica A 98, 1–26 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  58. Nicolis, G., Prigogine, I.: Exploring Complexity. An Introduction. Freeman & Company, New York (1989)

    Google Scholar 

  59. Ney, A., Albert, D.: The Wave Function. Oxford University Press, New York (2013)

    Book  MATH  Google Scholar 

  60. Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994)

    MATH  Google Scholar 

  61. Omnès, R.:. Decoherence: an irreversible process. Los Alamos National Laboratory. arXiv:quant-ph/0106006 (2001)

  62. Omnès, R.: Decoherence, irreversibility and the selection by decoherence of quantum states with definite probabilities. Phys. Rev. A 65, 052119 (2002)

    Article  ADS  Google Scholar 

  63. Pauli, W.: Die allgemeinen Prinzipien der Wellenmechanik (English translation: General Principles of Quantum Mechanics). In: Geiger, H., Scheel, K. (eds.) Handbuch der Physik, vol. 24, pp. 83–272. Springer, Berlin (1933)

    Google Scholar 

  64. Paz, J. P., Zurek, W. H.: Environment-induced decoherence and the transition from quantum to classical. In: Heiss, D. (ed.) Fundamentals of Quantum Information, Lecture Notes in Physics, vol. 587. pp. 77–148. Springer, Heidelberg. arXiv:quant-ph/0010011 (2002)

  65. Schlosshauer, M.: Decoherence and the Quantum-to-Classical Transition. Springer, Heidelberg (2007). (4th reprint 2009)

    Google Scholar 

  66. Uffink, J.: Compendium of the foundations of classical statistical physics. In: Butterfield, J., Earman, J. (eds.) Philosophy of Physics, pp. 923–1074. Elsevier, Amsterdam (2007)

    Chapter  Google Scholar 

  67. Vermaas, P., Dieks, D.: The modal interpretation of quantum mechanics and its generalization to density operators. Found. Phys. 25, 145–158 (1995)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  68. Zeh, D.: On the interpretation of measurement in quantum theory. Found. Phys. 1, 69–76 (1970)

    Article  ADS  Google Scholar 

  69. Zeh, D.: Toward a quantum theory of observation. Found. Phys. 3, 109–116 (1973)

    Article  ADS  Google Scholar 

  70. Zeh, H.D.: Roots and fruits of decoherence. Séminaire Poincaré 2, 1–19 (2005)

    MathSciNet  Google Scholar 

  71. Zurek, W.H.: Pointer basis of quantum apparatus: into what mixtures does the wave packet collapse? Phys. Rev. D 24, 1516–1525 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  72. Zurek, W.H.: Environment-induced superselection rules. Phys. Rev. D 26, 1862–1880 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  73. Zurek, W.H.: Decoherence and the transition from quantum to classical. Phys. Today 44, 36–44 (1991)

    Article  Google Scholar 

  74. Zurek, W.H.: Preferred states, predictability, classicality and the environment-induced decoherence. Prog. Theor. Phys. 89, 281–312 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  75. Zurek, W.H.: Preferred sets of states, predictability, classicality and environment-induced decoherence. In: Halliwell, J.J., Pérez-Mercader, J., Zurek, W.H. (eds.) Physical Origins of Time Asymmetry, pp. 175–207. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  76. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–776 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants of Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT); and Universidad de Buenos Aires (UBA), Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olimpia Lombardi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fortin, S., Lombardi, O. Partial Traces in Decoherence and in Interpretation: What Do Reduced States Refer to?. Found Phys 44, 426–446 (2014). https://doi.org/10.1007/s10701-014-9791-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9791-3

Keywords

Navigation