Skip to main content
Log in

Photon Flux and Distance from the Source: Consequences for Quantum Communication

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The paper explores the fundamental physical principles of quantum mechanics (in fact, quantum field theory) that limit the bit rate for long distances and examines the assumption used in this exploration that losses can be ignored. Propagation of photons in optical fibers is modelled using methods of quantum electrodynamics. We define the “photon duration” as the standard deviation of the photon arrival time; we find its asymptotics for long distances and then obtain the main result of the paper: the linear dependence of photon duration on the distance when losses can be ignored. This effect puts the limit to joint increasing of the photon flux and the distance from the source and it has consequences for quantum communication. Once quantum communication develops into a real technology (including essential decrease of losses in optical fibres), it would be appealing to engineers to increase both the photon flux and the distance. And here our “photon flux/distance effect” has to be taken into account. This effect also may set an additional constraint to the performance of a loophole free test of Bell’s type—to close jointly the detection and locality loopholes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Ömer, B., Fürst, M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481 (2007)

    Article  Google Scholar 

  2. Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics. Cambridge Univ. Press, Cambridge (1987)

    MATH  Google Scholar 

  3. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analysers. Phys. Rev. Lett. 49, 1804 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  4. Weihs, G., Jennewein, T., Simon, C., Weinfurter, R., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  5. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23(15), 880–884 (1969)

    Article  ADS  Google Scholar 

  6. Giustina, M., Mech, Al, Ramelow, S., Wittmann, B., Kofler, J., Beyer, J., Lita, A., Calkins, B., Th- Gerrits, Woo Nam, S., Ursin, R., Zeilinger, A.: Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)

    Article  ADS  Google Scholar 

  7. Christensen, B.G., McCusker, K.T., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., Miller, A., Shalm, L.K., Zhang, Y., Nam, S.W., Brunner, N., Lim, C.C.W., Gisin, N., Kwiat, P.G.: Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 1304–1306 (2013)

    Google Scholar 

  8. De Muynck, W.M.: Foundations of Quantum Mechanics, an Empiricists Approach. Kluwer Academic Publ., Dordrecht (2002)

    Google Scholar 

  9. Adenier, G., Khrennikov, A.: Is the fair sampling assumption supported by EPR experiments? J. Phys. B At. Mol. Opt. Phys. 40, 131–141 (2007)

    Article  ADS  Google Scholar 

  10. Hooft, G’t: G.: the free-will postulate in quantum mechanics. Her Russ Acad Sci 81, 907–911 (2011). ArXiv: quant-ph/0701097v1

    Google Scholar 

  11. Jaeger, G.: Entanglement, Information, and the Interpretation of Quantum Mechanics (The Frontiers Collection). Springer, Heidelberg (2009)

    Book  Google Scholar 

  12. Plotnitsky, A.: Epistemology and Probability: Bohr, Heisenberg, Schrödinger, and the Nature of Quantum-Theoretical Thinking. Springer, Heidelberg (2009)

  13. Khrennikov, A.: Contextual Approach to Quantum Formalism. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  14. Groessing, G.: EmerQuM 11: Emergent Quantum Mechanics 2011 (Heinz von Foerster Congress) J. Phys. Conf. Ser. (2012). doi:10.1088/1742-6596/361/1/011001

  15. De Raedt, K., Keimpema, K., De Raedt, H., Michielsen, K., Miyashita, S.: A local realist model for correlations of the singlet state. Eur. Phys. J. B 53, 139–142 (2006)

    Article  ADS  Google Scholar 

  16. Khrennikov, AYu., Volovich, I.V.: Local realism, contextualism and loopholes in Bell‘s experiments. In: Khrennikov, AYu. (ed.) Foundations of Probability and Physics-2. Ser. Math. Model. 5, pp. 325–344. Växjö University Press, Växjö (2002)

    Google Scholar 

  17. Zhang, Q., Takesue, H., Nam, S.W., Langrock, C., Xie, X., Baek, B., Fejer, M.M., Yamamoto, Y.: Distribution of time-energy entanglement over 100 km fibre using superconducting singlephoton detectors. Opt. Express 16, 5776 (2008)

    Google Scholar 

  18. Lloyd, S., Shahriar, M.S., Shapiro, J.H., Hemmer, P.R.: Long distance, unconditional teleportation of atomic states via complete Bell state measurements. Phys. Rev. Lett. 87, 167903 (2001)

    Article  ADS  Google Scholar 

  19. Landry, O., van Houwelingen, J.A.W., Beveratos, A., Zbinden, H., Gisin, N.: Quantum teleportation over the Swisscom telecommunication network. J. Opt. Soc. Am. B 24(2), 398–403 (2007)

    Article  ADS  Google Scholar 

  20. Hübel, H., Vanner, M.R., Lederer, T., Blauensteiner, B., Lorünser, T., Poppe, A., Zeilinger, A.: High-fidelity transmission of polarization encoded qubits from an entangled source over 100 km of fibre. Opt. Express 15, 7853 (2007)

    Article  ADS  Google Scholar 

  21. Marcikic, I., de Riedmatten, H., Tittel, W., Zbinden, H., Legre, M., Gisin, N.: Distribution of time-bin entangled qubits over 50 km of optical fibre. Phys. Rev. Lett. 93, 180502 (2004)

    Article  ADS  Google Scholar 

  22. Takesue, H.: Long-distance distribution of time-bin entanglement generated in a cooled fibre. Opt. Express 14, 3453 (2006)

    Article  ADS  Google Scholar 

  23. Honjo, T., Takesue, H., Kamada, H., Nishida, Y., Tadanaga, O., Asobe, M., Inoue, K.: Long-distance distribution of time-bin entangled photon pairs over 100 km using frequency up-conversion detectors. Opt. Express 15, 13957 (2007)

    Article  ADS  Google Scholar 

  24. Miya, T., Ternuma, Y., Hosaka, T., Migashita, T.: Ultimate low-loss single-mode fibre at \(1.55\,{\mu }\)m. Electron. Lett. 15, 106 (1979)

  25. Agrawal, G.P.: Fiber-Optic Communication Systems, 4th edn. Wiley, New York (2010)

    Book  Google Scholar 

  26. Matloob, Reza, Loudon, Rodney: Electromagnetic field quantization in absorbing dielectrics. ii. Phys. Rev. A 53, 4567–4582 (1996)

    Article  ADS  Google Scholar 

  27. Gruner, T., Welsch, D.-G.: Green-function approach to the radiation-field quantization for homogeneous and inhomogeneous Kramers–Kronig dielectrics. Phys. Rev. A 53, 1818–1829 (1996)

    Article  ADS  Google Scholar 

  28. Christ, A., Laiho, K., Eckstein, A., Lauckner, T., Mosley, P., Silberhorn, C.: Spatial modes in waveguided parametric down-conversion. Phys. Rev. A 80(3), 033829 (2009)

    Article  ADS  Google Scholar 

  29. Ishiwatari, T., Khrennikov, A., Nilsson, B., Volovich, I.: Quantum field theory and distance effects for polarization correlations in waveguides. In: 3rd conf. mathematical modeling of wave phenomena/20th Nordic conference on radio science and communications, vol. 1106 of AIP conference proceeding, pp 276–285. American Inst. of Physics (2009).

  30. Khrennikov, A., Nilsson, B., Nordebo, S., Volovich, I.: Distance dependence of entangled photons in waveguides. In: Conference FPP6-Foundations of probability and physics-6, vol. 1424 of AIP conference proceeding, pp. 262–269. American Inst. of Physics, Melville (2012).

  31. Khrennikov, A., Nilsson, B., Nordebo, S., Volovich, I.: Quantization of propagating modes in optical fibres. Phys. Scr. 85, 06505 (2012)

    Article  Google Scholar 

  32. Khrennikov, A., Nilsson, B., Nordebo, S., Volovich, I. On the quantization of the electromagnetic field of a layered dielectric waveguide. In: Conference QTRF6—Quantim theory: reconsideration of foundations-6, vol. 1508 of AIP conference proceedings, pp. 285–299. American Inst. of Physics, Melville (2012).

  33. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  34. Nordebo, S., Nilsson,B., Biro, T., Cinar, G., Gustafsson, M., Gustafsson, S., Karlsson, A., and Sjöberg, M.: Low-frequency dispersion characteristics of the multi-layered coaxial cable. J. Eng. Math. (2013) Accepted for publication.

  35. Nussenzveig, H.M.: Causality and Dispersion Relations. Academic Press, New York (1972)

    Google Scholar 

  36. Huttner, B., Barnett, S.M.: Quantization of the electromagnetic field in dielectrics. Phys. Rev. A 46, 4306–4322 (1992)

    Article  ADS  Google Scholar 

  37. Matloob, R., Loudon, R., Barnett, S.M., Jeffers, J.: Electromagnetic field quantization in absorbing dielectrics. Phys. Rev. A 52, 4823–4838 (1995)

    Article  ADS  Google Scholar 

  38. Matloob, R.: Electromagnetic field quantization in an absorbing medium. Phys. Rev. A 60, 50–55 (1999)

    Article  ADS  Google Scholar 

  39. Matloob, R.: Electromagnetic field quantization in a linear isotropic dielectric. Phys. Rev. A 69, 052110 (2004)

    Article  ADS  Google Scholar 

  40. Olver, F.: Asymptotics and Special Functions. A. K. Peters, Natick (1997)

    MATH  Google Scholar 

  41. Jones, D.S.: The Theory of Generalised Functions, 2nd edn. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The work was supported by the following funding agencies: MPNS COST Action MP1006 (Fundamental Problems in Quantum Physics), Austrian Academy of Science (visiting professor fellowship of A. Khrennikov at Vienna University and Atom Institute, 2013). The authors would like to thank both reviewers for valuable comments and advices which improved essentially clarity of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei Khrennikov.

Appendices

Appendix 1: The Modal Functions

Details are given in this appendix for the (two-layered) fibre modal functions based on an analysis of the quantization of the \(n\)-layered fibre with losses [32]. The electrical modal function is \(\varvec{\psi }_{mk}(\varvec{r})=\varvec{\psi }_{mk}(\rho )\text {exp}[\text {i}(kz+m\varphi )]\), with

$$\begin{aligned} \varvec{\psi }_{mk}(\rho )=\left\{ \begin{array}{l} a_{1mk}\varvec{v}_{1mk}(\rho )+a_{2mk}\varvec{v}_{2mk}(\rho ),\rho <a\\ b_{1mk}\varvec{w}_{1mk}(\rho )+b_{2mk}\varvec{w}_{2mk}(\rho ),\rho >a \end{array}\right. . \end{aligned}$$
(28)

The radial basis functions \(\varvec{v}_{1mk}(\rho ),\varvec{v}_{2mk} (\rho ),\varvec{w}_{1mk}(\rho ),\) and \(\varvec{w}_{2mk}(\rho )\) are expressed in terms of the Bessel function J\(_{m}\) of order \(m\) and the Modified Bessel function K\(_{m}\) of the second kind and order \(m\) via

$$\begin{aligned} \left\{ \begin{array}{l} \varvec{v}_{1mk}(\rho )=\hat{\varvec{\rho }}\frac{\text {i}m}{\kappa \rho }\text {J} _{m}(\kappa \rho )-\hat{\varvec{\varphi }}\text {J}_{m}^{\prime }(\kappa \rho ),\\ \varvec{v}_{2mk}(\rho )=\hat{\varvec{\rho }}\frac{\text {i}k}{k_{0}}\text {J}_{m}^{\prime }(\kappa \rho )-\hat{\varvec{\varphi }}\frac{mk}{k_{0}\kappa \rho }\text {J}_{m}(\kappa \rho )+\hat{\varvec{z}}\frac{\kappa }{k_{0}}\text {J}_{m}(\kappa \rho ), \end{array}\right. \end{aligned}$$
(29)

and

$$\begin{aligned} \left\{ \begin{array}{l} \varvec{w}_{1mk}(\rho )=\hat{\varvec{\rho }}\frac{\text {i}m}{q\rho }\text {K}_{m} (q\rho )-\hat{\varvec{\varphi }}\text {K}_{m}^{\prime }(q\rho ),\\ \varvec{w}_{2mk}(\rho )=\hat{\varvec{\rho }}\frac{\text {i}k}{k_{0}}\text {K}_{m}^{\prime }(q\rho )-\hat{\varvec{\varphi }}\frac{mk}{k_{0}q\rho }\text {K}_{m}(q\rho )-\hat{\varvec{z}}\frac{q}{k_{0}}\text {K}_{m}(q\rho ). \end{array} \right. \end{aligned}$$
(30)

The expansion coefficients \(a_{1mk},a_{2mk},b_{1mk},\) and \(b_{2mk}\) with the modal frequency \(\omega _{mk}\) solving the dispersion relation \(G_{m} (\omega _{mk},k)=0\) are determined to meet the following conditions: \(\nabla \times \nabla \times \varvec{\psi }_{mk}(\varvec{r})=k_{0}^{2}\epsilon (\rho ) \varvec{\psi }_{mk}(\varvec{r})\) and \(\nabla \times \varvec{\psi }_{mk}(\varvec{r})=0\) when \(\rho \ne a,\) continuity of the tangential components of \(\varvec{E}=\varvec{\psi }_{mk}\) and \(\varvec{H}=\left( \text {i}\omega _{mk}\sqrt{\epsilon _{0}\mu _{0}}\right) ^{-1}\nabla \times \varvec{E},\) regularity at \(\rho =0,\) and the Silver–Müller radiation condition at infinity. \(\omega _{mk}\) should be used for \(\omega \) in \(k_0,\kappa , q, \epsilon _1\) and \(\epsilon _2\). Uniqueness for the coefficients is reached by the normalization condition

$$\begin{aligned} \int _{\mathbb {R}^{3}}\epsilon (\rho )\varvec{\psi }_{mk}(\varvec{r})\cdot \varvec{\psi }_{m^{\prime }k^{\prime }}^{*}(\varvec{r})\text {d}V=2\pi \delta _{mm^{\prime }}\delta (k-k^{\prime }), \end{aligned}$$
(31)

or equivalently

$$\begin{aligned} 2\pi \int _{0}^{2\pi }\rho \text {d} \rho \,\epsilon (\rho )\varvec{\psi }_{mk}(\rho )\cdot \varvec{\psi }_{mk}^{*}(\rho )=1. \end{aligned}$$
(32)

Here \(\epsilon (\rho )=\epsilon _{1}\) for \(\rho <a\) and \(\epsilon _{2}\) for \(\rho >a.\) Note that the modal functions do not form a basis since the non-discrete contributions are omitted.

Appendix 2: Derivation of the Asymptotic Results

The asymptotic results for the moments in (18) are based on two asymptotic theorems that are presented next. The first theorem is [40]

Theorem 1

Let \(\varphi (t)\) be sectionally continuous in \((0,\infty )\) except at a finite number of critical points. Then

$$\begin{aligned} \int _{0}^{\infty }\text {e}^{\text {i}vx}\varphi (v)\text {d}v=o(1), \quad \text { when }x\rightarrow \infty , \end{aligned}$$

if the integral converges uniformly at \(0,\infty \) and the critical points for all \(x\) that are large enough.

A variant of Theorem 1 is

Theorem 2

(Riemann–Lesbesgue’s lemma) Let \(\varphi \in \mathrm{L}^1\), then

$$\begin{aligned} \int _{0}^{\infty }\text {e}^{\text {i}vx}\varphi (v)\text {d}v=o(1), \quad \text { when }x\rightarrow \infty . \end{aligned}$$

Based on Theorem 1 the following main asymptotic theorem is proved.

Theorem 3

Let \(\phi (v)=\frac{\text {d}}{\text {d}v}\left[ \ln v\,\varphi (v)\right] \) and assume that

  1. (i)

    \(\varphi (v)\) and \(\varphi ^{\prime }(v)\) are continuous in a right neigbourhood of \(0\)

  2. (ii)

    \(\varphi (v)\) is sectionally continuous in \([0,\infty )\) except at a finite number of critical points

  3. (iii)

    \(I(x)=\int _{0}^{\infty }\)e\(^{\text {i}vx}\ln v\,\varphi (v)\)d\(v\) converges

  4. (iv)

    \(\int _{0}^{\infty }\)e\(^{\text {i}vx}\,\phi (v)\)d\(v\) converges uniformly at \(0,\infty \) and the critical points.

Then

$$\begin{aligned} I(x)=\dfrac{-\varphi (0)\text {i}}{x}\left[ \ln x+\gamma -\text {i}\pi /2\right] +o(1/x), \quad x\rightarrow \infty . \end{aligned}$$
(33)

Comment 1

A sufficient condition for (iv) to hold is that the integral converges absolutely. However, this condition is not necessary.

Proof

Let \(\varphi _{0}(v)=\varphi (0)\)e\(^{-v},\xi (v)=\varphi (v)-\varphi _{0}(v),\) and \(I_{0}(x)=\int _{0}^{\infty }\)e\(^{\text {i}vx}\ln v\,\varphi _{0}(v)\)d\(v.\) The variable transformation \(xv=t\) and the Laplace transform with \(s=1/x-\text {i}\) then yields

$$\begin{aligned} I_{0}(x)&=\frac{\varphi (0)}{x}\int _{0}^{\infty }e^{-(1/x-\text {i})t}\ln t\,dt-\frac{\varphi (0)\ln x}{x}\int _{0}^{\infty }e^{-(1/x-\text {i} )t}\,dt\end{aligned}$$
(34)
$$\begin{aligned}&=\frac{-\varphi (0)}{1-\text {i} x}\left[ \gamma +\ln (1/x-\text {i})+\ln x\right] . \end{aligned}$$
(35)

Now,

$$\begin{aligned} I(x)-I_{0}(x)&=\int _{0}^{\infty }e^{\text {i}vx}\ln v\,\xi (v)\text {d} v\end{aligned}$$
(36)
$$\begin{aligned}&=\frac{\text {i}}{x}\int _{0}^{\infty }e^{\text {i}vx}\frac{\text {d}}{\text {d} v}\left[ \ln v\,\xi (v)\right] \text {d}v, \end{aligned}$$
(37)

due to (iv) and that \(\xi (v)\) is continuous and vanishes at \(v=0.\) From Theorem 1 follows that \(I(x)-I_{0}(x)=\) o\((1/x),\) when \(x\rightarrow \infty \) and an asymptotic expansion of \(I_{0}(x)\) gives (33) ending the proof of the theorem. \(\square \)

Finally in this appendix, we present some details for the derivation of (17, 18). Based on (15),

$$\begin{aligned} \left\{ \begin{array}{l} \tau _{nm}(z)=\tau _{nm}^\mathrm{P}(z)+\tau _{nm}^{\delta }(z)\\ \tau _{nm}^{\delta }(z)=\tau _{nm}^{\delta +}(z)+\tau _{nm}^{\delta -}(z) \end{array} \right. , \end{aligned}$$
(38)

is written as the sum of three terms: the first term \(\tau _{nm}^\mathrm{P}(z)\) originates from the Cauchy principle value integration based on the first term in (15), the other two terms \(\tau _{nm}^{\delta \pm }(z).\) come from integration of \(\delta ^{(n)}(\omega _{mk^{\prime }\varepsilon }-\omega _{mk\varepsilon })\) giving contributions at \(k=\pm k^{\prime }\) that is indicated in the super index \(^{\delta \pm }\).

Starting with \(\tau _{nm}^{\delta }(z)\), it is first observed that \(\tau _{1m}^{\delta }(z)\), being one half of the value of (15), vanishes. This can be seen by extending the integration in \(t\) in (15) from \((0,\infty )\) to \((-\infty ,\infty ).\) By changing the sign of the integration variables \(t, k\) and \(k'\) and utilizing the reality condition \(f_{m,-k\varepsilon }(\rho )=f_{mk\varepsilon }^{*}(\rho ),\) it is found that \(\tau _{1m}^{\delta }(z)=-(\tau _{1m}^{\delta }(z))^*\) that vanishes being real by construction.

Thus, only \(n=0\) and \(2\) are required for \(\tau _{nm}^{\delta }(z)\) and the following general result is used; see [41] for similar results. Let \(f(x)\) have simple zeros at \(x_{m},\) \(m=1,2,\) \(f^{\prime }(x_{m})\ne 0\) and \(f^{\prime \prime }(x)\) as well as \(f^{\prime \prime \prime }(x)\) be continuous in a surrounding of \(x_{m}.\) Then, we have

$$\begin{aligned} \left\{ \begin{array}{l} \delta \left\{ f(x)\right\} =\sum \limits _{m=1,2}\frac{\delta (x-x_{m} )}{\left| f^{\prime }(x_{m})\right| }\\ \delta ^{\prime \prime }\left\{ f(x)\right\} =\sum \limits _{m=1,2}\frac{1}{\left| f^{\prime }(x_{m})\right| ^{3}}\left\{ \delta ^{\prime \prime }(x-x_{m})\right. \\ -\left. \frac{3f^{\prime \prime }(x_{m})\delta ^{\prime }(x-x_{m} )}{f^{\prime }(x_{m})}+\frac{\delta (x-x_{m})}{f^{\prime }(x_{m})}\left[ \frac{3\left[ f^{\prime \prime }(x_{m})\right] ^{2}}{f^{\prime }(x_{m} )}-f^{\prime \prime \prime }(x_{m})\right] \right\} \end{array} \right. \end{aligned}$$
(39)

The second observation is that the oscillating factor \(\mathrm{exp}[\text {i}(k-k')z]\) in (13) is, due to (36), present in \(\tau _{nm}^{\delta +}(z)\) but not in \(\tau _{nm}^{\delta -}(z)\). It is therefore expected from Riemann–Lebesgue’s theorem that \(\tau _{nm}^{\delta -}(z)\) does not contribute to the dominating behaviour of \(\tau _{nm}(z)\). Confirming details for this supposition are, however, not presented.

Using the first equation in (39), we can perform the \(k^{\prime }\) integration in (13) to get \(\tau _{0m}^{\delta +}(z)=\tau _{0m}^{\sim }\) and using the supposition above we find that \(\tau _{0m}^{\delta }(z)=\tau _{0m}^{\sim }+\mathrm{o}(1),z\rightarrow \infty \).

For \(\tau _{2m}^{\delta }(z)\) we have that the dominating contribution comes from the first term in the second equation in (36) with \(k'=k\). The result is that \(\tau _{2m}^{\delta }(z)=\tau _{2m}^{~}z^2+\mathrm{o}(z^2)\). This ends the asymptotic calculations for \(\tau _{nm}^{\delta }(z)\).

Next \(\tau _{nm}^\mathrm{P}(z)\) is on the cards. After transforming variables in (13) using

$$\begin{aligned} \left\{ \begin{array}{l} \xi =k+k^{\prime }\\ \eta =k-k^{\prime } \end{array} \right. , \end{aligned}$$
(40)

the result is

$$\begin{aligned} \tau _{nm}^\mathrm{P}(z)=\lim _{\varepsilon \rightarrow 0}\frac{n!}{2\text {i}^{n+1}}\int \!\!\!\int _{\mathbb {R}^{2}}\hbox {d} \xi \,\hbox {d}\eta \frac{G_{nm\varepsilon }(\xi ,\eta )}{(\xi \eta )^{n+1}}\text {e}^{\text {i}\eta z}, \end{aligned}$$
(41)

where

$$\begin{aligned} G_{nm\varepsilon }(\xi ,\eta )=\frac{2\pi }{\left[ F_{m\varepsilon }(\frac{\xi +\eta }{2},\frac{\xi -\eta }{2})\right] ^{n+1}}\int _{0}^{a}\rho \,\text {d}\rho f_{m\frac{\xi +\eta }{2}\varepsilon } (\rho )f_{m\frac{\xi -\eta }{2}\varepsilon }^{*}(\rho ). \end{aligned}$$
(42)

The Cauchy principle integrals for \(\xi \) and \(\eta \) in (41) are calculated using the regularization scheme [41]

$$\begin{aligned} \int _{-\infty }^{\infty }x^{-n-1}\gamma (x)\text {d}x=\frac{-1}{n!}\int _{-\infty }^{\infty }\gamma ^{(n+1)}\ln |x|\text {d}x, \quad n=0,1,2, \end{aligned}$$
(43)

with the result

$$\begin{aligned} \left\{ \begin{array}{l} \tau _{nm}^\mathrm{P}(z)=\lim _{\varepsilon \rightarrow 0}\dfrac{1}{2\text {i}^{n+1}n!}\int _{\mathbb {R}}\,\hbox {d}\xi \ln |\xi |\frac{\partial ^{n+1} J_{nm\varepsilon }(\xi ,z)}{\partial \xi ^{n+1}}\\ J_{nm\varepsilon }(\xi ,z)=\int _{\mathbb {R}}\,\hbox {d}\eta \ln |\eta |\frac{\partial ^{n+1} }{\partial \eta ^{n+1}}\left[ G_{nm\varepsilon }(\xi ,\eta )\text {e}^{\text {i}\eta z}\right] \end{array} \right. . \end{aligned}$$
(44)

The dominating contribution \(J_{nm\varepsilon }^{\,\mathrm {dom}}(\xi ,z)\) to \(J_{nm\varepsilon }(\xi ,z)\) comes at \(\eta =0\) in (44) making \(J_{nm\varepsilon }^{\,\mathrm {dom}}(\cdot ,z)\) an even function for \(n\) even. The contribution from \(J_{nm\varepsilon }^{\,\mathrm {dom}}(\xi ,z)\) to \(\tau _{nm}^\mathrm{P}(z)\) is therefore vanishing when \(n\) is even. As a result, \(\tau _{nm}^\mathrm{P}(z)=\mathrm{o}(\tau _{nm}^{\delta }(z)),z\rightarrow \infty \) for even \(n\). The proof of this statement is omitted.

In contrast, \(J_{1m\varepsilon }(\xi ,z)\) provides the dominating to the asymptotic behaviour of \(\tau _{1m}^{\,\mathrm P}(z)\) and then also \(\tau _{nm}(z)\).

With

$$\begin{aligned} \frac{\partial ^2}{\partial \eta ^2}\left[ G_{1m\varepsilon }(\xi ,\eta )\text {e}^{\text {i}\eta z}\right] \!=\! \text {e}^{\text {i} \eta z}\left[ \frac{\partial ^2 }{\partial \eta ^2}G_{1m\varepsilon }(\xi ,\eta )\!+\!2\text {i} z\frac{\partial }{\partial \eta }G_{1m\varepsilon }(\xi ,\eta )\!-\!z^2G_{1m\varepsilon }(\xi ,\eta )\right] , \end{aligned}$$
(45)

it is found that the last term provides the dominating contribution to \(\tau _{nm}(z)\). To this end, we define

$$\begin{aligned} J_{nm\varepsilon }^{\,\mathrm{dom}}(\xi ,z)=-z^2 \int _{\mathbb {R}}\,\hbox {d}\eta \ln |\eta | G_{1m\varepsilon }(\xi ,\eta )\text {e}^{\text {i}\eta z}, \end{aligned}$$
(46)

which due to that \(G_{1m\varepsilon }(\xi ,-\eta )=G_{1m\varepsilon }^*(\xi ,\eta )\), is

$$\begin{aligned} J_{1m\varepsilon }^{\,\mathrm{dom}}(\xi ,z)=-2z^2\mathrm{Re }\int _{0}^{\infty }\,\hbox {d}\eta \ln {\eta } G_{1m\varepsilon }(\xi ,\eta )\text {e}^{\text {i}\eta z}+o(1), \quad z\rightarrow \infty . \end{aligned}$$
(47)

An application of Theorem 3 then yields that

$$\begin{aligned} J_{1m\varepsilon }(\xi ,z)=J_{1m\varepsilon }^{\,\mathrm{dom}}(\xi ,z)+\mathrm{o}(z)=\pi zG_{1m\varepsilon }(\xi ,0)+\mathrm{o}(z). \end{aligned}$$
(48)

Assume for the asymptotic analysis for large \(z\) that Riemann–Lebesgue’s lemma can be used on \(\varphi (\cdot )=\ln |\cdot |\frac{\partial ^{2}}{\partial \cdot ^{2}} G_{1m\varepsilon }(\xi ,\cdot )\) and Theorem 3 on \(\varphi (\cdot )=G_{1m\varepsilon }(\xi ,\cdot ).\) Note that this puts requirements on the initial state \(g_{m\cdot }\) in (11) rather than on \(\omega _{m\cdot \varepsilon }\) and \(\psi _{m\cdot }\) that are fixed functions.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khrennikov, A., Nilsson, B., Nordebo, S. et al. Photon Flux and Distance from the Source: Consequences for Quantum Communication. Found Phys 44, 389–405 (2014). https://doi.org/10.1007/s10701-014-9786-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-014-9786-0

Keywords

Navigation