Skip to main content
Log in

Gravity-Related Wave Function Collapse

Is Superfluid He Exceptional?

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The gravity-related model of spontaneous wave function collapse, a longtime hypothesis, damps the massive Schrödinger Cat states in quantum theory. We extend the hypothesis and assume that spontaneous wave function collapses are responsible for the emergence of Newton interaction. Superfluid helium would then show significant and testable gravitational anomalies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diósi, L.: A quantum-stochastic gravitation model and the reduction of the wavefunction. Thesis in Hungarian. http://www.rmki.kfki.hu/~diosi/thesis1986.pdf (1986)

  2. Diósi, L.: A universal master equation for the gravitational violation of the quantum mechanics. Phys. Lett. A 120, 377–381 (1987)

    Article  ADS  Google Scholar 

  3. Diósi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989)

    Article  ADS  Google Scholar 

  4. Penrose, R.: Shadows of the Mind. Oxford University Press, Oxford (1994)

    Google Scholar 

  5. Penrose, R.: On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Penrose, R.: Quantum computation, entanglement and state reduction. Philos. Trans. R. Soc. Lond. A 356, 1927–1939 (1998)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Penrose, R.: The Road to Reality. Jonathan Cape Publishers, London (2004)

    Google Scholar 

  8. Adler, S.L.: Comments on proposed gravitational modifications of Schrödinger dynamics and their experimental implications. J. Phys. A 40, 755–764 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  9. Marshall, W., Simon, C., Penrose, R., Bouwmeester, D.: Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401-1–130401-4 (2003)

  10. Christian, J.: Testing gravity-driven collapse of the wave function via cosmogenic neutrinos. Phys. Rev. Lett. 95, 160403-1–160403-4 (2005)

  11. Vanner, M.R., Pikovski, I., Cole, G.D., Kim, M.S., Brukner, Č., Hammerer, K., Milburn, G.J., Aspelmeyer, M.: Pulsed quantum optomechanics. PNAS 108, 16182–16187 (2011)

    Article  ADS  Google Scholar 

  12. Romero-Isart, O.: Quantum superposition of massive objects and collapse models. Phys. Rev. A 84, 052121-1–052121-17 (2011)

  13. Li, T., Kheifets, S., Raizen, M.G.: Millikelvin cooling of an optically trapped microsphere in vacuum. Nat. Phys. 7, 527–530 (2011)

    Article  Google Scholar 

  14. Pepper, B., Ghobadi, R., Jeffrey, E., Simon, C., Bouwmeester, D.: Optomechanical superpositions via nested interferometry. Phys. Rev. Lett. 109, 023601-1–023601-5 (2012)

    Google Scholar 

  15. Diósi, L.: Gravity-related wave function collapse: mass density resolution. J. Phys. Conf. Ser. 442, 012001-1–012001-7 (2013)

  16. Bassi, A., Ghirardi, G.C.: Dynamical reduction models. Phys. Rep. 379, 257–426 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  17. Pearl, P.: Wavefunction collapse and conservation laws. Found. Phys. 30, 1145–1160 (2000)

    Article  MathSciNet  Google Scholar 

  18. Diósi, L.: Notes on certain Newton gravity mechanisms of wave function localisation and decoherence. J. Phys. A 40, 2989–2995 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  19. Diósi, L., Lukács, B.: In favor of a Newtonian quantum gravity. Annln. Phys. 44, 488–492 (1987)

    Article  Google Scholar 

  20. Diósi, L.: Quantum measurement and gravity for each other. In: Cvitanovic, P., Percival, I., Wirzba, A. (eds.) Quantum Chaos—Quantum Measurement, p. 299. Kluwer, Dordrecht (1992)

  21. Diósi, L.: Does wave function collapse cause gravity? J. Phys. Conf. Ser. 174, 012002-1–012002-6 (2009)

  22. Diósi, L.: Note on possible emergence time of Newtonian gravity. Phys. Lett. A 377, 1782–1783 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author thanks the organizers of the International Workshop on Horizons of Quantum Physics for their invitation and generous support. This research was supported by the Hungarian Scientific Research Fund under Grant No. 75129 and by the EU COST Action MP1006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lajos Diósi.

Appendix: Newton Oscillator

Appendix: Newton Oscillator

Take a homogeneous ball of mass density \(\rho \), bore a narrow diagonal hole through it, and gently place a probe somewhere into the hole (Fig. 1). The probe oscillates harmonically at frequency

$$\begin{aligned} \omega _G=\sqrt{4\pi G\rho /3}, \end{aligned}$$

where \(G\) is the Newton constant. It is remarkable that the frequency is the function of density \(\rho \) only, it does not depend separately on the size and the mass of the ball. In typical condensed matter the density \(\rho \) is a few times 1 g/cm\(^3\), the frequency of the Newton oscillator is \(\omega _G \sim 10^{-3}\)/s, the period is as long as cca 1 h.

Formally, we can consider the Newton oscillator inside a homogeneous ball of nuclear density \(\rho ^\mathrm {nucl}\sim 10^{12}\) g/cm\(^3\). The oscillator frequency

$$\begin{aligned} \omega _G^\mathrm {nucl}=\sqrt{4\pi G\rho ^\mathrm {nucl}/3} \end{aligned}$$

becomes of the order of \(10^{3}\)/s, the period is as small as cca 1 ms.

Fig. 1
figure 1

Schematic view of a homogeneous ball of density \(\rho \), with an infinite narrow diagonal hole where the probe is oscillating at frequency \(\omega _G=\sqrt{4\pi G\rho /3}\) under the directional force of the Newton field of the ball

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diósi, L. Gravity-Related Wave Function Collapse. Found Phys 44, 483–491 (2014). https://doi.org/10.1007/s10701-013-9767-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9767-8

Keywords

Navigation