Foundations of Physics

, Volume 44, Issue 1, pp 71–90 | Cite as

Complete Measurements of Quantum Observables

  • Juha-Pekka Pellonpää


We define a complete measurement of a quantum observable (POVM) as a measurement of the maximally refined (rank-1) version of the POVM. Complete measurements give information on the multiplicities of the measurement outcomes and can be viewed as state preparation procedures. We show that any POVM can be measured completely by using sequential measurements or maximally refinable instruments. Moreover, the ancillary space of a complete measurement can be chosen to be minimal.


Quantum observable Positive operator valued measure Instrument Measurement model Rank-1 observable Maximally refined observable Sequential measurement 



This work was supported by the Academy of Finland grant No. 138135.


  1. 1.
    Prugovec̆ki, E.: Information-theoretical aspects of quantum measurement. Int. J. Theor. Phys. 16, 321–331 (1977) CrossRefMathSciNetGoogle Scholar
  2. 2.
    Busch, P., Lahti, P.J.: The determination of the past and the future of a physical system in quantum mechanics. Found. Phys. 19, 633–678 (1989) ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    Flammia, S.T., Silberfarb, A., Caves, C.M.: Minimal informationally complete measurements for pure states. Found. Phys. 35, 1985–2006 (2005) ADSCrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Davies, E.B.: Quantum Theory of Open Systems. Academic Press, London (1976) MATHGoogle Scholar
  5. 5.
    Busch, P., Lahti, P.J., Mittelstaedt, P.: The Quantum Theory of Measurement—Second Revised Edition. Springer, Berlin (1996) Google Scholar
  6. 6.
    Heinosaari, T., Ziman, M.: The Mathematical Language of Quantum Theory—From Uncertainty to Entanglement. Cambridge University Press, Cambridge (2012) MATHGoogle Scholar
  7. 7.
    Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland, Amsterdam (1982) MATHGoogle Scholar
  8. 8.
    Holevo, A.S.: Statistical Structure of Quantum Theory. Lecture Notes in Physics, vol. 67. Springer, Berlin (2001) MATHGoogle Scholar
  9. 9.
    Pellonpää, J.-P.: Complete characterization of extreme quantum observables in infinite dimensions. J. Phys. A, Math. Theor. 44, 085304 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    Davies, E.B., Lewis, J.T.: An operational approach to quantum probability. Commun. Math. Phys. 17, 239–260 (1970) ADSCrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Ozawa, M.: Quantum measuring processes of continuous observables. J. Math. Phys. 25, 79–87 (1984) ADSCrossRefMathSciNetGoogle Scholar
  12. 12.
    Pellonpää, J.-P.: Quantum instruments: I. Extreme instruments. J. Phys. A, Math. Theor. 46, 025302 (2013) ADSCrossRefGoogle Scholar
  13. 13.
    Pellonpää, J.-P.: Quantum instruments: II. Measurement theory. J. Phys. A, Math. Theor. 46, 025303 (2013) ADSCrossRefGoogle Scholar
  14. 14.
    Hytönen, T., Pellonpää, J.-P., Ylinen, K.: Positive sesquilinear form measures and generalized eigenvalue expansions. J. Math. Anal. Appl. 336, 1287–1304 (2007) CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Haapasalo, E., Heinosaari, T., Pellonpää, J.-P.: Quantum measurements on finite dimensional systems: relabeling and mixing. Quantum Inf. Process. 11, 1751–1763 (2012) ADSCrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Heinosaari, T., Wolf, M.M.: Non-disturbing quantum measurements. J. Math. Phys. 51, 092201 (2010) ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    Heinosaari, T., Pellonpää, J.-P.: Generalized coherent states and extremal positive operator valued measures. J. Phys. A, Math. Theor. 45, 244019 (2012) ADSCrossRefGoogle Scholar
  18. 18.
    Ozawa, M.: Concepts of conditional expectations in quantum theory. J. Math. Phys. 26, 1948–1955 (1985) ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Holevo, A.S.: Radon–Nikodym derivatives of quantum instruments. J. Math. Phys. 39, 1373–1387 (1998) ADSCrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Pellonpää, J.-P.: Complete quantum measurements break entanglement. Phys. Lett. A 376, 3495–3498 (2012) ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Turku Centre for Quantum Physics, Department of Physics and AstronomyUniversity of TurkuTurkuFinland

Personalised recommendations