Skip to main content

Advertisement

Log in

Reassessment of Leggett Inequality

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

Leggett formulated an inequality that seems to generalize the Bell theorem to non-local hidden variable theories. Leggett inequality is violated by quantum mechanics, as was confirmed by experiment. However, a careful analysis reveals that the theory applies to a class of local theory. Contrary to what happens in the derivation of Bell inequality, it is not necessary to make the hypothesis of outcome independence to derive the Leggett inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. If the value of those hidden variables associated with the particle at B is affected by the switching of the detector at A, we have a non-local influence, and if the value of the hidden variables at the time of the emission of the pair is affected, we have retrocausality.

  2. Actually, Ref. [10] assumed deterministic theories, so that hypothesis (OI) was replaced by the stricter hypothesis of determinism, while stochastic theories obeying condition (OI) were treated in Refs. [19, 20]. Condition (OI), however, was assumed implicitly, and this fact was first pointed out in Ref. [16], which referred to (OI) as “completeness”, while the more neutral and technical term “outcome-independence” was coined by Shimony [17]. We prefer using the term “Reducibility of Correlations”, which describes better the essence of the hypothesis.

  3. In my opinion, using “locality” as a synonymous of (MI)+(OI)+(SI) is misleading, since physicists not working in the field of Bell inequalities when reading “locality” translate to either “no-signaling” or “no-action-at-a-distance”, while papers using “locality” in the specialized sense do not customarily warn their readers of the terminology. For this reason, in the present manuscript I am avoiding using locality in this specialized sense, and refer to it merely as no-signaling.

  4. The hidden-variable theory might predict that the average value observed at one arm 〈σ a,b ≡∑σP(σ,τ|a,b)≠0. In this case C(a,b) would not be the correlator, but simply the spin-spin average. However, 〈σ a,b ≠0 would already contradict existing experiments.

  5. Equation (36) of [42] is to be replaced by Eq. (30) below, since the variables θ′ appearing therein are a function of θ j and ϕ j , but ϕ j have been integrated out in (36).

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935). http://link.aps.org/doi/10.1103/PhysRev.47.777

    Article  ADS  MATH  Google Scholar 

  2. Ruark, A.E.: Is the quantum-mechanical description of physical reality complete? Phys. Rev. 48(5), 466 (1935). http://link.aps.org/doi/10.1103/PhysRev.48.466.2

    Article  ADS  MATH  Google Scholar 

  3. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48(8), 696 (1935). http://link.aps.org/doi/10.1103/PhysRev.48.696

    Article  ADS  MATH  Google Scholar 

  4. Kemble, E.C.: The correlation of wave functions with the states of physical systems. Phys. Rev. 47(12), 973 (1935). http://link.aps.org/doi/10.1103/PhysRev.47.973.2

    Article  ADS  Google Scholar 

  5. Furry, W.H.: Note on the quantum-mechanical theory of measurement. Phys. Rev. 49(5), 393 (1936). http://link.aps.org/doi/10.1103/PhysRev.49.393

    Article  ADS  MATH  Google Scholar 

  6. Wolfe, H.C.: Quantum mechanics and physical reality. Phys. Rev. 49(3), 274 (1936). http://link.aps.org/doi/10.1103/PhysRev.49.274

    Article  ADS  Google Scholar 

  7. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. Rev. 85(2), 166 (1952). http://link.aps.org/doi/10.1103/PhysRev.85.166

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. II. Phys. Rev. 85(2), 180 (1952). http://link.aps.org/doi/10.1103/PhysRev.85.180

    Article  MathSciNet  ADS  Google Scholar 

  9. Bohm, D., Aharonov, Y.: Discussion of experimental proof for the paradox of Einstein, Rosen, and Podolsky. Phys. Rev. 108(4), 1070 (1957). http://link.aps.org/doi/10.1103/PhysRev.108.1070

    Article  MathSciNet  ADS  Google Scholar 

  10. Bell, J.S.: On the Einstein-Podolsky-Rosen paradox. Physics 1, 195 (1964)

    Google Scholar 

  11. Brans, C.H.: Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theor. Phys. 27, 219 (1988). doi:10.1007/BF00670750

    Article  Google Scholar 

  12. Hall, M.J.W.: Local deterministic model of singlet state correlations based on relaxing measurement independence. Phys. Rev. Lett. 105, 250404 (2010). http://link.aps.org/doi/10.1103/PhysRevLett.105.250404

    Article  ADS  Google Scholar 

  13. Di Lorenzo, A.: A simple model for the spin singlet: mathematical equivalence of non-locality, slave will and conspiracy. J. Phys. A, Math. Theor. 45(26), 265302 (2012). http://stacks.iop.org/1751-8121/45/i=26/a=265302

    Article  MathSciNet  ADS  Google Scholar 

  14. Di Lorenzo, A.: Are quantum correlations genuinely quantum? Int. J. Mod. Phys. B 27, 1345016 (2012). http://www.worldscientific.com/doi/abs/10.1142/S0217979213450161

    Article  MathSciNet  ADS  Google Scholar 

  15. Hall, M.J.W.: Relaxed Bell inequalities and Kochen-Specker theorems. Phys. Rev. A 84, 022102 (2011). http://link.aps.org/doi/10.1103/PhysRevA.84.022102

    Article  ADS  Google Scholar 

  16. Jarrett, J.P.: On the physical significance of the locality conditions in the bell arguments. Noûs 18(4), 569 (1984). http://www.jstor.org/stable/2214878

    Article  MathSciNet  Google Scholar 

  17. Shimony, A.: In: Miller, A.I. (ed.) Sixty-Two Years of Uncertainty: Historical, Philosophical, and Physical Inquiries into the Foundations of Quantum Mechanics, pp. 33–43. Plenum, New York (1990)

    Chapter  Google Scholar 

  18. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969). http://link.aps.org/doi/10.1103/PhysRevLett.23.880

    Article  ADS  Google Scholar 

  19. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Phys. Rev. D 10, 526 (1974). http://link.aps.org/doi/10.1103/PhysRevD.10.526

    Article  ADS  Google Scholar 

  20. Bell, J.S.: In: D’Espagnat, B. (ed.) 49th International School of Physics “Enrico Fermi”: Foundations of Quantum Mechanics, Varenna, Italy, pp. 171–181. Academic Press, New York (1971)

    Google Scholar 

  21. Freedman, S.J., Clauser, J.F.: Experimental test of local hidden-variable theories. Phys. Rev. Lett. 28(14), 938 (1972). http://link.aps.org/doi/10.1103/PhysRevLett.28.938

    Article  ADS  Google Scholar 

  22. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm gedanken experiment; a new violation of Bell’s inequalities. Phys. Rev. Lett. 49, 91 (1982). http://link.aps.org/doi/10.1103/PhysRevLett.49.91

    Article  ADS  Google Scholar 

  23. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s inequalities using time-varying analyzers. Phys. Rev. Lett. 49, 1804 (1982). http://link.aps.org/doi/10.1103/PhysRevLett.49.1804

    Article  MathSciNet  ADS  Google Scholar 

  24. Tapster, P.R., Rarity, J.G., Owens, P.C.M.: Violation of Bell’s inequality over 4 km of optical fiber. Phys. Rev. Lett. 73(14), 1923 (1994). http://link.aps.org/doi/10.1103/PhysRevLett.73.1923

    Article  ADS  Google Scholar 

  25. Tittel, W., Brendel, J., Gisin, B., Herzog, T., Zbinden, H., Gisin, N.: Experimental demonstration of quantum correlations over more than 10 km. Phys. Rev. A 57(5), 3229 (1998). http://link.aps.org/doi/10.1103/PhysRevA.57.3229

    Article  ADS  Google Scholar 

  26. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality conditions. Phys. Rev. Lett. 81(23), 5039 (1998). http://link.aps.org/doi/10.1103/PhysRevLett.81.5039

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Rowe, M.A., Kielpinski, D., Meyer, V., Sackett, C.A., Itano, W.M., Monroe, C., Wineland, D.J.: Experimental violation of a Bell’s inequality with efficient detection. Nature 409, 791 (2001). doi:10.1038/35057215

    Article  ADS  Google Scholar 

  28. Leggett, A.: Nonlocal hidden-variable theories and quantum mechanics: an incompatibility theorem. Found. Phys. 33, 1469 (2003). doi:10.1023/A:1026096313729

    Article  MathSciNet  Google Scholar 

  29. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: An experimental test of non-local realism. Nature 446(7138), 871 (2007). doi:10.1038/nature05677

    Article  ADS  Google Scholar 

  30. Paterek, T., Fedrizzi, A., Gröblacher, S., Jennewein, T., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Experimental test of nonlocal realistic theories without the rotational symmetry assumption. Phys. Rev. Lett. 99(21), 210406 (2007). http://link.aps.org/doi/10.1103/PhysRevLett.99.210406

    Article  ADS  Google Scholar 

  31. Branciard, C., Ling, A., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Scarani, V.: Experimental falsification of Leggett’s nonlocal variable model. Phys. Rev. Lett. 99(21), 210407 (2007). http://link.aps.org/doi/10.1103/PhysRevLett.99.210407

    Article  ADS  Google Scholar 

  32. Eisaman, M.D., Goldschmidt, E.A., Chen, J., Fan, J., Migdall, A.: Experimental test of nonlocal realism using a fiber-based source of polarization-entangled photon pairs. Phys. Rev. A 77(3), 032339 (2008). http://link.aps.org/doi/10.1103/PhysRevA.77.032339

    Article  ADS  Google Scholar 

  33. Branciard, C., Brunner, N., Gisin, N., Kurtsiefer, C., Lamas-Linares, A., Ling, A., Scarani, V.: Testing quantum correlations versus single-particle properties within Leggett’s model and beyond. Nat. Phys. 4(9), 681 (2008). doi:10.1038/nphys1020

    Article  Google Scholar 

  34. Romero, J., Leach, J., Jack, B., Barnett, S.M., Padgett, M.J., Franke-Arnold, S.: Violation of Leggett inequalities in orbital angular momentum subspaces. New J. Phys. 12, 123007 (2010). doi:10.1088/1367-2630/12/12/123007

    Article  ADS  Google Scholar 

  35. Paternostro, M., Jeong, H.: Testing nonlocal realism with entangled coherent states. Phys. Rev. A 81(3), 032115 (2010). doi:10.1103/PhysRevA.81.032115

    Article  MathSciNet  ADS  Google Scholar 

  36. Lee, C.W., Paternostro, M., Jeong, H.: Faithful test of nonlocal realism with entangled coherent states. Phys. Rev. A 83, 022102 (2011). http://link.aps.org/doi/10.1103/PhysRevA.83.022102

    Article  ADS  Google Scholar 

  37. Suarez, A.: Nonlocal “realistic” Leggett models can be considered refuted by the before-before experiment. Found. Phys. 38, 583 (2008). doi:10.1007/s10701-008-9228-y

    Article  ADS  Google Scholar 

  38. Stefanov, A., Zbinden, H., Gisin, N., Suarez, A.: Quantum correlations with spacelike separated beam splitters in motion: experimental test of multisimultaneity. Phys. Rev. Lett. 88, 120404 (2002). http://link.aps.org/doi/10.1103/PhysRevLett.88.120404

    Article  ADS  Google Scholar 

  39. Aspect, A.: Quantum mechanics: to be or not to be local. Nature 446, 866 (2007). doi:10.1038/446866a

    Article  ADS  Google Scholar 

  40. Colbeck, R., Renner, R.: Hidden variable models for quantum theory cannot have any local part. Phys. Rev. Lett. 101(5), 050403 (2008). http://link.aps.org/doi/10.1103/PhysRevLett.101.050403

    Article  MathSciNet  ADS  Google Scholar 

  41. Di Lorenzo, A.: Determination of hidden variable models reproducing the spin-singlet. Phys. Rev. A 86, 042119 (2012). http://link.aps.org/doi/10.1103/PhysRevA.86.042119

    Article  ADS  Google Scholar 

  42. Gröblacher, S., Paterek, T., Kaltenbaek, R., Brukner, Č., Żukowski, M., Aspelmeyer, M., Zeilinger, A.: Supplementary information to an experimental test of non-local realism. Nature 446, 871 (2007). http://www.nature.com/nature/journal/v446/n7138/suppinfo/nature05677.html

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was performed as part of the Brazilian Instituto Nacional de Ciência e Tecnologia para a Informação Quântica (INCT–IQ) and it was supported by Fundação de Amparo à Pesquisa do Estado de Minas Gerais through Process No. APQ-02804-10.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Di Lorenzo.

Appendix

Appendix

Equation (9) is our starting point. Let us study the term

$$ R(\mathbf{a},\mathbf{b})\equiv \int dF \vert \mathbf{u}\cdot \mathbf{a}-\mathbf{v}\cdot\mathbf{b} \vert . $$
(16)

The value of the function inside the absolute value is independent of the choice of coordinate system, so its functional dependence on the coordinates must change with the coordinate system. The same is true for the function F. In Ref. [28] a fixed coordinate system was used, so that the functional dependence of F on its parameters is given. We indicate this fixed function in spherical coordinates as . It is also assumed that and , i.e. the polarizations of the detectors vary in the XY plane of the fixed coordinate system. We call p the unit vector along the Z axis in the coordinate system . The vectors u and v can be written as u=sinθ u (cosϕ u ,sinϕ u ,0)+cosθ u (0,0,1) and v=sinθ v (cosϕ v ,sinϕ v ,0)+cosθ v (0,0,1), with θ u ∈[0,π] and θ v ∈[0,π] the angles with the fixed Z axis. After defining ξ≡(ϕ a +ϕ b )/2 and ϕϕ a ϕ b , it is immediate to check that Eq. (16) can be rewritten

(17)

with N(≥0) and δ defined by

(18)
(19)

By averaging Eq. (9) over the possible values of ξ, i.e. rotating a and b in the fixed XY plane while keeping their relative direction unchanged, we obtain

$$ -1+L_{\mathbf{p}}(\phi) \le C_{\mathbf{p}}(\mathbf{a}\cdot\mathbf{b}) \le 1-R_{\mathbf{p}}(\phi), $$
(20)

where

(21)
(22)

and

(23)
(24)

with S ±≡sinθ u ±sinθ v , α=ϕ u ϕ v ϕ. Since N depends only on ϕ u ϕ v , θ u , and θ v , it is convenient to change variables to χϕ u ϕ v and ψ=(ϕ u +ϕ v )/2. The two inner integrals in Eq. (21) then become

$$ \int_{-\pi}^{\pi} d\phi_u d \phi_v (\ldots) = \int_{-2\pi}^{2\pi} d\chi \int _{-\pi+|\chi/2|}^{\pi-|\chi/2|}d\psi(\ldots). $$
(25)

After defining the marginal distribution

Eq. (21) can be rewritten

(26)

Thus, the correlator satisfies

$$ -1+L_{\mathbf{p}}(\phi)\le C_{\mathbf{p}}(\phi) \le1-R_{\mathbf{p}}(\phi ). $$
(27)

By letting the angle between a and b vary while keeping both vectors in the XY plane, and summing the inequalities, it can be proved, following Ref. [42], that

$$ \bigl \vert C_{\mathbf{p}}(\phi)+C_{\mathbf{p}}\bigl( \phi'\bigr)\bigr \vert \le 2-\frac{2\sqrt{2}}{\pi}J \sin{\biggl \vert \frac{\phi-\phi'}{2}\biggr \vert }, $$
(28)

with

(29)

and another marginal distribution.

Now there is a subtle point to be made: After restoring ϕ u and ϕ v , i.e., writing , Eq. (29) can be cast in invariant form, so thatFootnote 5

(30)

Now, if we consider another unit vector p′ and let a and b vary in the plane orthogonal to p′, letting the angle between them take the same values ϕ and ϕ′, the inequality reads

(31)

By summing Eqs. (30) and (31), and noticing that [see Eqs. (37)–(43) of Ref. [42] for a proof]

$$\sqrt{2-(\mathbf{p}\cdot\mathbf{u})^2-(\mathbf{p}\cdot \mathbf{v})^2}+ \sqrt{2-\bigl(\mathbf{p'}\cdot\mathbf{u} \bigr)^2-\bigl(\mathbf{p'}\cdot\mathbf{v} \bigr)^2} \ge\sqrt{2}, $$

when pp′=0, we arrive at an inequality independent on the knowledge of the measure dF, namely

$$ \bigl \vert C_{\mathbf{p}}(\phi)+C_{\mathbf{p}}\bigl( \phi'\bigr)\bigr \vert + \bigl \vert C_{\mathbf{p'}}( \phi)+C_{\mathbf{p'}}\bigl(\phi'\bigr)\bigr \vert \le 4- \frac{4}{\pi}\sin{\biggl \vert \frac{\phi-\phi'}{2}\biggr \vert } $$
(32)

for pp′=0, which is Leggett inequality.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Di Lorenzo, A. Reassessment of Leggett Inequality. Found Phys 43, 685–698 (2013). https://doi.org/10.1007/s10701-013-9710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10701-013-9710-z

Keywords

Navigation